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ABSTRACT 

     The Geometries, electronic structures and vibration frequencies of 

Cr(CO)6, Cr(CO)5pip, were studied using the Hartree-Fock and B3LYP 

density functional level of theory combined with various basis sets. These 

methods have been implemented in the Gaussian 98 program. Comparison 

with experimental data shows that density functional theory with triple-

split-valence polarized 6-311G (D) basis set gives good results for the 

structures and vibration frequencies of such compounds. The discrepancy 

between experimental and theoretical values results from the description of 

the wave function by a finite number of functions (basis sets). This 

introduces an approximation into the calculations since an infinite number 

of Gaussian functions would be needed to describe the wave function 

exactly. The same calculations have been performed on a series of 

carbonyl chromium complexes, of the type trans-(chlorobenzene)- 

(L)Cr(CO)4, where L = CO, PH3, PCl3 and PF3.  The aim of this project is 

to explore the effect of these ligands on the Cr-Cl bond. The influences of 

the L ligands on the properties of these complexes are compared with the 

behavior of the carbonyl complex Cr(CO)6. The largest effect observed on 

the Cr-Cl bond is when L = CO. As the π  back-bonding ability of the 

ligand Trans to chlorobenzene increases, the Cr-Cl bond distance 

increases. This effect in the octahedral complexes is similar to the Trans 

effect in square Planar complexes. The calculated IR frequencies in these 
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complexes are in good agreement with the reported experimental IR 

values. 
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 ملخص
كل و ة الش ت دراس د تم ة الجلق ة وذبذب ة الالكتروني ات الترآيب ن زیئ ل م  لك

  :المرآبات التالية

Cr(CO)6و  Cr(CO)5pip     باستخدام الطرق المحوسبة )Hartree-Fock    

(Density Functional Theory واستخدام  Basis sets مختلفة وذلك عن 

 .Gaussian 98  برنامجطریق

د أعطت    ة      Density Functional Theoryلق دة بالنسبة للترآيب ائج جي  نت

ة  ذبات الجزیئي ة والذب ة الالكتروني يم المخبری ع الق ة م س .  مقارن تخدام نف و باس

 :حيث ان trans-(CB)(L)Cr(CO)4  الطریقة تمت دراسة المرآبات 

 CO, PCL3, PF3, PH3 L = 

ذه            اثير ه ة ت ذه    Ligands  ال الهدف من هذه الدراسة هو معرف ى صفات ه  عل

ة    ات مقارن اثير       . Cr(CO)6مع   المرآب ين ان ت ذه الدراسة تب  transو في ه

CO على الرابطة Cr-Cl درة         آان هو اتج عن ق ذا ن ر وه وین   COالأآب  لتك

π-back bonding. 

  في الشكل ذات الثمانية اوجه       Ligandsأظهرت هذه الدراسة ان تاثير هذه أل        

ي تاخذ        ( Octahedral)المنتظم ات الت اثير في المرآب نفس الت  شكل ال مشابه ل

طح  اعي المس ة  .(Square planar)الرب ذه الدراس رت ه ا واظه يمان آم   الق

ذه    ات الجزیئات ذبذبل وسبةالمح ابه       في ه ات مش ذبات      المرآب ة لذب يم المخبری للق

 .نفس الجزیئات
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Chapter 1 

Introduction 

     One of the most important goals of computational chemistry is to 

calculate from first principles the various physical and chemical quantities 

[1]. These calculations require a solution of the electronic structure of the 

system in question, which is based upon the principles of quantum 

mechanics. Such calculations are very computer-intensive [2]. However, 

because of advances in computer storage capacity and processor perform- 

ance, electronic structure calculations have been rapidly evolving. It is 

now possible to solve relevant problems in an acceptable amount of time 

[2]. The density-functional theory (DFT) makes a huge step towards this 

goal by changing the problem of many interacting electrons to that of non-

interacting particles under the influence of an effective potential [3].                         

     Computational chemistry opens the door for chemists to simulate 

chemical structures and reactions numerically. These chemical phenomena 

are simulated rather than occurring experimentally [4]. Furthermore; 

computational chemistry can develop new materials, and can accelerate the 

research by reducing the cost and the risk to personnel testing of energetic 

materials [2], because handling a single compound could require months 

of labor and raw materials, and generate toxic waste [5]. 
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Geometrical optimization and infrared (IR) calculations of 

transition metal complexes by the DFT method proved to be very 

successful and requires less CPU time. The use of the LanL2dz and the 6-

311G (D) basis set with DFT for quantum chemical calculations of several 

inorganic molecules were shown to give satisfactory results when 

compared with experimental data [6].                                

     Transition metal carbonyl systems are of great interest in many areas of 

chemistry, ranging from organometallic synthesis to catalysis [7]. The 

chemistry of the main group organometallic is governed by the metal in 

the compound, whereas for the transition group organometallic, the metal 

and the ligand nature dominate [8].      

     Pulsed laser flash photolysis of cis-(pip)(L)Cr(CO)4 in the presence of 

chlorobenzene (CB) leads to the formation of cis and trans-

(CB)(L)Cr(CO)4 (pip is piperidine and L = CO, PH3, PCl3 or P(OCH3)) as 

shown in Figure 1.1. Dobson and co-workers have shown that the CB 

replacement of the cis formed intermediate takes place at a faster rate than 

the trans intermediate [9].  The rate of CB displacement from the cis 

intermediate increases with the size of L bonded to the metal center [10]. 

Furthermore, the nature of bonding of CB with the metal center, in this 

case chromium was shown to take place between the chlorine and 

chromium [11]. Upon laser flash photolysis of cis-(pip)(L)Cr(CO)4 the pip 

is lost and the vibration excited five coordinate intermediate will 

isomerizes to form the  vacant cis site to L and the  vacant trans site.  The 
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solvent such as (CB) will occupy these vacant sites on a Pico-second time 

scale and it will be replaced by the incoming ligand on the micro to mille-

second time scale. In these time scales, there is no evidence for thermally 

induced isomerization from cis to trans or vice-versa of five coordinate 

intermediate was seen to take place [10]. 

 

 Figure 1.1 Pulsed laser flash photolysis of cis (pip)(L)Cr(CO)4 in the 
presence of chlorobenzene (CB) leads to the formation of cis and trans 
(CB)(L)Cr(CO)4 (pip is pipredine and L = CO, PH3, PCl3, P(OCH3)) [10]. 

Since the last two decades, Scientists focused their attention on 

ligand substitution reactions of stable Group 6 metal carbonyls and their 

substitution products, (L)nM(CO)6-n. Similar complexes containing much 

more weakly coordinating ligands (Lw, such as CB, which contains Cl as 

functional group, have been studied by flash photo-analysis [11,12]. This 
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research expanded these later studies through a detailed investigation of 

the displacement (CB), which coordinates to Cr through Cl. The study of 

the electronic effect of ligands on the metal environment was the center of 

attention in inorganic chemistry [10, 11, 12]. In octahedral chromium 

complexes, two positions for a selected ligand L, namely the cis and trans 

are possible. In this work the trans effect was discussed. As a starting 

point, the geometry of Cr(CO)6 was optimized, using DFT and HF with 

various basis sets. The optimized structures reported here were obtained 

from gas phase calculations. The optimized bond lengths Cr-CO, C-O 

were compared with reported experimental values [4]. Results obtained by 

DFT using the 6-311G(D) basis set are in good agreement with the 

reported experimental values. Electronic structure calculations of 

Cr(CO)5pip have been performed. These calculations were based on the 

fully optimized geometries; frequency calculations were also performed, 

and compared with the reported experimental data. Structure and 

properties of trans-(CB)(L)Cr(CO)4 where L = CO, PCl3, PF3, PH3 were 

carefully  discussed in Chapter 5 to explore the effect of these ligands on 

the Cr-Cl bond. 

In addition, binding energies of chromium complexes were also 

discussed. This should give us important information about the bonding 

properties of metal complexes. 

 The work presented in this thesis is based on density functional 

calculations, all of which have been carried out with the Gaussian 98 
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program. Density functional theory (DFT) is based on the two basic 

theorems by Kohn and Hohenberg which state that the ground state energy 

of the N-electron systems is a unique functional of the electron density 

distribution [13]. The theorems are quite important since they allow one to 

concentrate on the search for the electron density of the system, rather than 

the many-body quantum wave function, which is a much more 

complicated object. DFT, which used extensively in chemistry and 

physics, had great success in explaining and calculating the electronic 

structure of molecules and solids. DFT also provides information on the 

electron density distribution and ground state energy in a system of 

interest. There are many variants of DFT, possibly the most promising are 

those dealing with time dependent implementation of DFT. Walter Kohn 

and John A. Pople received a Nobel Prize in chemistry (1998) for the 

development of the density functional theory and related computational 

methods in quantum chemistry [13,14,15]. 
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Chapter2 

Overview of the Used Computational Methods 

     All work carried out in this study was based on quantum mechanics.  

This chapter will introduce the most important theoretical concepts needed 

to understand how the results were obtained. 

2.1 Introduction 

     Chemists used plastic models to help them understand and visualize the 

structures of molecules [5]. Recently both students and experienced 

researchers have begun to use chemical drawing programs for the same 

purpose [4]. Computational chemistry simulates chemical structures and 

reactions which are numerically based, in full or in part, on the 

fundamental laws of physics. It allows chemists to study chemical 

phenomena by running calculations on computers rather than by 

examining reactions and compounds experimentally [4]. Some methods 

can be used to model, not only stable molecules, but also short-lived 

unstable intermediates and transition states. In this way, they can provide 

information about molecules and reactions which is impossible to obtain 

through direct observation. Computational chemistry is, therefore, both an 

independent research area and a vital extra to experimental studies [2, 4, 

5]. 
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2.2 Quantum Mechanics 

     Quantum mechanics researchers are interested in understanding of how 

the electrons in molecules are behaving. Considering fundamental physics 

of electrons and atoms, quantum mechanics provides detailed information 

on these issues [4]. Quantum chemistry is concerned with the energy 

calculations of molecules and how this energy depends on structure. This 

subject is very important to chemists since the stability and the structure of 

the molecules depend on their energies [5]. 

2.2.1 Schrödinger Equation 

     Quantum mechanics states that the energy and other related properties 

of a molecule may be obtained by solving the Schrödinger equation [4]: 

Ψ=Ψ EH                                                    (2.1) 

      The Schrödinger equation is an eigenvalue problem. The operator on 

the left hand side of Equation 2.1 operates on the wave function that 

describes the wave-like nature of an electron. The wave function is 

represented by ψ . The result is the same wave function multiplied by 

constant. The operator from the left-hand side of Equation 2.1 is called a 

Hamiltonian operator which is symbolized by H [5]. When Equation 2.1 is 

solved, the result is a set of possible wave functions (called eigen- 

functions) kψ  and corresponding energies (eigenvalues) kE . The eigen- 

function 0ψ  corresponds to the lowest energy 0E . It describes the ground 
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state of the system, and the higher energy values correspond to excited 

states. 

2.2.2 Schrödinger Equation for the Hydrogen Atom  

     The Hydrogen atom is of particular interest to chemists because it 

serves as the prototype for more complex atoms and, therefore molecules. 

The hydrogen atom will be pictured as a proton fixed at the origin and an 

electron of mass me interacting with the proton through a Columbic 

potential [16, 17]: 

                                           
r

erV
0

2

4
)(

πε
=                                               (2.2) 

Where e is the charge, 0ε  is the permittivity constant of the free space, and 

r is the distance between the electron and the proton. The spherical 

geometry of the model suggests that spherical coordinates is suitable to be 

used, with the proton at the origin. The Hamiltonian operator for the 

hydrogen atom is 

(2.3) 

 

where ∇  is the Laplacian operator in spherical coordinates: 

2

2
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2

2
2
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1)(1
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θθ ∂
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∂
∂

∂
∂

+
∂
∂

∂
∂

=∇
rrr

r
rr

                  (2.4) 

If Equation 2.4 is substituted into Equation 2.3, the Schrödinger equation 

for the hydrogen atom becomes 

r
e

m
H

e 0
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Equation 2.5 can be solved exactly, giving a series of hydrogen-like 

atomic orbital wave functions of the form [17] 

                                       ),()(),,( φθφθ mnlnlm YrRr =Ψ                            (2.6) 

where n ,l , m are quantum numbers. For n = 1, l = 0, m = 0, it gives 

                                     

σ

π
−=Ψ e

a
Z

s
2
3

0
1 )(1

                                           (2.7)      

and if n = 2, l = 1, m = 0, then 

                            θσ
π

σ

cos)(
32
1 2

.
2
3

0
2

−

=Ψ e
a
Z

zp                                 (2.8) 

The quantity Z is the atomic number of the nucleus and 

                                   0a
Zr

=σ
                                                                (2.9) 

where 0a  is the Bohr radius [15]. 

2.2.3 The Schrödinger Equation for the Helium Atom Cannot Be 

Solved Exactly 

      The Schrödinger equation for the helium atom is 
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In this equation, R is the position of the helium nucleus and r1 and r2 are 

the positions of the two electrons, M is the mass of the nucleus and 2
1∇  and 

2
2∇  are the Laplacian operators with respect to the positions of the 

electronic coordinates. This is a three-body problem and not a two-body 

problem, so the separation into center of mass and relative coordinates is 

more complicated than for hydrogen atom [18]. However, because M >> 

me, it is still an excellent approximation to regard the nucleus as fixed with 

no motion. This is known as the Born-Oppenheimer approximation [17]. 

Under this approximation, it is possible to fix the nucleus at the origin of a 

spherical coordinates system and write the Schrödinger equation as [15]: 

)11.2(),(

),(
4

),()11(
4
2),()(

2

21

21
210

2

21
210

2

21
22

2

rrE

rr
rr

err
rr

err
me

Ψ=

Ψ
−

+Ψ+−Ψ∇+∇−
πεπε

h

 

This simplified equation can not be solved exactly. 

The term 

                                           
210

2

4 rr
e

−πε
                                              (2.12) 

causes difficulty. This term is called the interelectronic repulsion term and 

is directly responsible for the difficulty associated with solving Equation 

2.11.  Without it, the total Hamiltonian operators in Equation 2.11 would 

be the sum of the Hamiltonian operators of two hydrogen-like atoms, and 

the total energy would be the sum of the energies of the two individual 
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hydrogen-like atoms. Also the wave function would be a product of two 

hydrogen-like atomic orbitals. To solve Equation 2.11, approximation 

methods must be used. Two such methods have found wide use in 

quantum chemistry and yield extremely good results: 

◙ Perturbation theory 

◙ Variation method 

 

2.2.4 Perturbation Theory 

     The idea behind perturbation theory is as following: If it is impossible 

to solve the Schrödinger equation 

                                                Ψ= EEĤ                                              (2.13) 

for some  system of interest, but it is not possible to solve it for another 

system that in some sense similar, then it is possible to write the 

Hamiltonian operator as 

                                            )1()0( ˆˆˆ HHH +=                                         (2.14) 

Where 

                                       )0()0()0()0(ˆ Ψ=Ψ EH                                       (2.15) 

This Schrödinger equation is possible to solve exactly [15]. The first term 

in Equation 2.14 )0(Ĥ  is called the unperturbed Hamiltonian operator and 

the additional term represents the perturbation. To apply perturbation 
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theory to the solution of Equation 2.13, ψ  and E  may be written in the 

form 

                                   ....)2()1()0( +Ψ+Ψ+Ψ=Ψ                           (2.16) 

and  

                                      ...)2()1()0( +++= EEEE                                (2.17) 

where ψ(0) and )0(E  are given by the solution to the unperturbed problem 

Equation 2.15 and ψ(1), ψ(2),... are successive corrections to ψ(0) and )1(E  

, )2(E  , ... are successive corrections to )0(E . Here the discussion will be 

limited to the first order perturbation theory, that is, )1(H , )1(ψ , and )1(E . 

)1(E  is giving by 

                                 ∫ ΨΨ= τdHE )0()1()0()1(                                       (2.18) 

)1(E  is the first order correction to )0(E and 

 

                                   )1()0( Ψ+Ψ=Ψ                                                  (2.19) 

                                   )1()0( EEE +=                                                    (2.20) 

Equation 2.20 represents the energy through first order perturbation theory 

[15]. 

2.2.5 Variation Method 

     While it is impossible to solve the Schrödinger equation exactly for 

multi-electron systems, one can get approximate solutions given enough 
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time to compute any desired accuracy. Considering the ground state of 

some particular arbitrary system, the ground state wave function 0ψ  and 

energy 0E  satisfy the Schrödinger equation 

                                           000
ˆ Ψ=Ψ EH                                              (2.21) 

If the left hand side of Equation 2.21 is multiplied by *
0ψ , and the resulting 

equation is integrated over all space, then the ground state energy can be 

written as: 

                                         
∫
∫

ΨΨ

ΨΨ
=

τ

τ

d

dH
E

0
*

0

0
*

0
0                                        (2.22) 

A theorem says that if any other function φ  is substituted instead of 0ψ  in 

Equation 2.22 and the corresponding energy calculated according to 

Equation 

                                              
∫
∫=

τφφ

τφφ
φ d

dH
E *

*

                                    (2.23) 

then φE will be greater than the ground-state energy oE  [19]. The variation 

principle states that 

                                                    0EE ≥φ                                             (2.24) 

where the equality holds only if φ  = 0ψ . According to the variation 

principle, it’s possible to calculate an upper bound to 0E by using any trial 

function. The closer φ  is to 0ψ , the closer φE  will be to 0E . It is possible 
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to choose a trial function φ  that depends upon some arbitrary parameters, 

α, β, γ, …, called variation parameters. The energy also will depend upon 

these variation parameters, and Equation 2.24 becomes 

                                      0,...),,( EE ≥γβαφ                                         (2.25) 

It is possible to minimize φE  with respect to each of the variation 

parameters and determine the best possible ground-state energy which can 

be obtained from the trial wave function used. It is possible to use a trial 

wave function of the form 

                                                 ∑
=

=
N

n
nn fc

1

φ                                           (2.26) 

 

where the nc  are variation parameters and nf are arbitrary known 

functions. For simplicity assume that N = 2, and that nc and nf  are real. 

With this simplification Equation 2.26 can be written as 

                                               2211 fcfc +=φ                                        (2.27) 

Then, substituting into Equation 2.23 one will get 

222
2

2121111
2

222
2

12212121111
2

22112211

ˆˆˆ

)(ˆ)(ˆ

HcHccHccHc

dfHfcdHffccdfHfccdfHfc

dfcfcHfcfcdH

+++=

+++

=++=

∫ ∫ ∫ ∫
∫ ∫

ττττ

ττφφ

          (2.28) 

where 
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                                              ∫= τdfHfH jiij
ˆ                                      (2.29) 

a Hermitian operator must satisfy 

                                          ∫ ∫= ττ dfHfdfHf ijji
ˆˆ                                (2.30) 

Hence, 

                              ∫ ++= 22
2

21221111
2 2ˆ HcHccHcdH τφφ                   (2.31) 

 and 

                               ∫ ∫ ++= ττφ dfcfcfcfcd ))(( 22112211
2

                (2.32) 

this can be written as 

                                ∫ ∫ ++= 222
2

122111
2

1
2 2 ScSccScdτφ

                   (2.33) 

The quantities ijH and ijS  are called matrix elements. By substituting 

Equations 2.30 and 2.32 into Equation 2.23, Equation 2.23 can be written 

as 

                            222
2

1221111
2

22
2

212211
2

21 2
2

),(
ScSccSc
HcHccHc

ccE
++
++

=
                     (2.34) 

this can be written as 

)2()2)(,( 222
2

1221111
2

222
2

1221111
2

21 HcHccHcScSccScccE ++=++ (2.35) 

If Equation 2.35 is differentiated with respect to c1, 

and letting  
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0

1

=
∂
∂
c
E

                                                     (2.36) 

then,  

                        0)()( 1212211111 =−+− ESHcESHc                             (2.37) 

Similarly, By differentiating E(c1,c2) with respect to 

c2, the result is 

                      0)()( 2222212121 =−+− ESHcESHc                              (2.38) 

Equations 2.37 and 2.38 constitute a pair of linear algebraic equations for 

c1 and c2. There is a nontrivial solution that is not simply c1 = c2 = 0, if and 

only if the determinant of the coefficients vanishes, or if and only if  

)39.2(0
22221212

12121111 =
−−
−−

ESHESH
ESHESH

 

This determinant is called a secular determinant. When this 2 X 2 

determinant is expanded, a quadratic equation in E  will be obtained, 

called the secular Equation. The quadratic secular equation gives two 

values for E ; the smaller one will be taken as the variation approximation 

for the ground-state energy [15]. 

If a linear combination of N functions is used in Equation 2.26 as a trail 

function, then the secular determinant will be of the form 
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0

...
......
......

...
...

2211

2222221212

1112121111

=

−−−

−−−
−−−

NNNNNNNN

NN

NN

ESHESHESH

ESHESHESH
ESHESHESH

              (2.40) 

The secular equation associated with this secular determinant is an Nth-

degree polynomial in E . The smallest root of the Nth-order secular 

equation is an approximation to the ground state energy. The 

determination of the smallest root must be done numerically for the value 

of N larger than two. This is a standard numerical problem, which needs a 

computer program. Trial functions can be a linear combination of 

functions that also contain variation parameters of the form 

                                               
∑
=

=
N

j
jj fc

1

φ
                                            (2.41) 

Where the jf  themselves contain variation parameters. The minimization 

of E  with respect to the jc  and jα  is fairly complicated, involving 2N 

parameters, and must be done numerically. Fortunately, a number of 

readily available algorithms can be used to do this [15, 17]. 

2.2.6 Multi-Electron System 

         For electrons moving in three dimensions in the presence of nuclei 

and other electrons, the Hamiltonian will have five terms comprising 

kinetic and potential energies: 
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◙ Kinetic energy of nuclei. 

◙ Kinetic energy of Electrons. 

◙ Potential energy: Nuclear-nuclear repulsion. 

◙ Potential energy: Nuclear-electron attraction. 

◙ Potential energy: Electron-electron repulsion. 

 

The full Hamiltonian for the molecular system can be written as [15, 19]: 

                                     eeennnentot UUUTTH ˆˆˆˆˆˆ ++++=                       (2.42) 

nT̂    is the operator of kinetic energy of nuclei 

eT̂  represent the kinetic energy of the electrons 

nnÛ  is the interaction energy of nuclei (Columbic repulsion) 

enÛ  is the external potential (in this case, the electrostatic potential coming 

from nuclei with which the electron interacts) 

eeÛ  denotes electrostatic repulsion between electrons [20]. 

and 

                                   
2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇
                                      (2.43) 
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 Using the Born-Oppenheimer simplification, it is possible to neglect the 

kinetic energy term of the nuclei, and the electronic Hamiltonian can be 

written as 

    
∑∑ ∑ ∑∑∑∑

>>= −
++−∇−=

N

i

M

A

N

i

M

A

M

AB BA

BA
N

ij ijiA

A
N

i
i

elec

RR
ZZ

rr
ZH 1

2
1ˆ

1

2

            (2.44) 

This Hamiltonian is then used in the Schrödinger equation describing the 

motion of electrons in the field of fixed nuclei [4, 15]: 

                 ),()(),( RrRERrH eleceffelecelec Ψ=Ψ                                   (2.45) 

Solving this equation, the effective nuclear potential function effE is 

obtained, which will then be used in the nuclear Hamiltonian 

                            )()( RERTH effnuclnucl +=                                        (2.46) 

This Hamiltonian is then used in the Schrödinger equation for nuclear 

motion which is useful in predicting the vibration spectra of the molecules 

[4]. 

2.3 Basis Sets 

        The essential idea in quantum chemical calculations is that molecular 

orbitals are expanded as linear combinations of atomic orbitals which are 

known as basis set [15 , 18, 19] 

                                               
∑=Ψ

n

iii c
µ

µµφ
                                        (2.47) 
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where iΨ  is the ith  molecular orbital, µic  are the coefficients of linear 

combinations, µφi  is the µth atomic orbital, and n is the number of atomic 

orbital. An orbital is the wave function of an electron which moves under 

the influence of the nuclear attraction and the average repulsion of all other 

electrons [5]. A basis set is a set of mathematical functions which 

describes the shape of the orbitals in an atom [5, 15]. These basis sets were 

combined to approximate the total electronic wave function which will be 

used in the calculation. Larger basis sets approximate the orbital more 

accurately because they impose fewer restrictions on the location of 

electrons in space [4, 21].  

Basis sets were first developed by J.C. Slater which has the general form 

                                      
)( rNefunctionBasis α−=                                 (2.48) 

where: 

N = normalization constant 

α  = orbital exponent 

r = radius in angstroms 

These functions were used because of their similarity to the atomic orbital 

of hydrogen atom and they are known as Slater type orbitals (STO's) [18]. 

They can be described in spherical coordinates as 

 

                              ),(),,( 1 φθφθ ξ
lm

rn
nlm YeNrrS −−=                             (2.49) 
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where N is a normalization constant, ζ is called exponent, r, θ , φ , are 

spherical coordinates, lmY  is the orbital angular momentum and n, l, m are 

the principle, angular momentum, magnetic quantum numbers, 

respectively [21].  Unfortunately, STO are not suitable for fast calculations 

because the integrals resulting from the secular determinants are difficult 

to evaluate [15, 19]. Therefore, Gaussian type orbitals (GTOs) were 

introduced. Gaussian and other ab-initio electronic structure programs use 

GTO as basis function [4, 15], which have the general form: 

                           ),(),,(
21 φθφθα α

lm
rn YeNrG −=                                  (2.50) 

where: 

N = normalization constant 

α  = orbital exponent [4]. 

 The Slater orbitals and the Gaussian orbitals behave differently for small 

values of r [15, 21]. Figure 2.1 compares a normalized STO
sS 1100 φ=  Slater 

orbital Equation (2.49) with a normalized STO
sG 1100 φ=  (Equation 2.50) for a 

hydrogen atom, with orbital exponents ζ  = 1.24 and φ  = 0.4166 in 

STO
s1φ and GF

s1φ , respectively. In carrying out a calculation, we use 

                                       )24.1,()( 11 rr STO
ss φφ =                                     (2.51) 

or 

                                      )1466.0,(11 rGF
ss φφ =                                      (2.52) 
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Depending on whether the Slater orbitals (STO) or Gaussian functions 

(GF) is used as a basis set, the 1s orbital in each of these basis sets is 

                                      
rSTO

s e ζ

π
ζφ −= 2

13

1 )(
                                           (2.53) 

and 

                                   

2
4
3

1 )2( rGF
s e α

π
αφ −=

                                            (2.54) 

Figure 2.1 shows that the Slater orbital has a cusp at r = 0, whereas the 

slope of the Gaussian orbital is zero at r = 0. The Gaussian orbital does a 

reasonably good job of describing the Slater orbital for values of r greater 

than 0a . To overcome this difficulty, a number of researchers in quantum 

chemistry have fitted Slater orbitals to sums of Gaussian functions. The fit 

improved with N, were N is the number of Gaussian functions used. 

 

 

Figure 2.1 A comparison of the normalized Slater orbital to the Gaussian 
orbital, with orbital exponents ζ = 1.24, and α  = 0.4166, [15] 
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Figure 2.2 The Slater STO
s1φ  orbital is compared by sums of different 

numbers of Gaussian functions [15] 

 

 Figure 2.2 shows this fit as a function of N. For example, for N = 3, the 

Slater orbital rSTO
s er 24.1

1 779.0)24.1,( −=φ is expressed by 

                 
)425.3,()6239.0,(5353.0

)1688.0,(4446.0),()(

11

3

1
11111

rr

rrdr

GF
s

GF
s

i

GF
ssi

GF
ssi

STO
s

φφ

φαφφ

++

==∑
=           (2.55) 

Because a sum of three Gaussian functions are used to represent one Slater 

orbital, such a basis set is called the STO-3G basis set. The general form of 

such basis sets is STO-NG (N = 1, 2, 3...) [4, 15]. 

2.3.1 Double Zeta Basis Sets 

      STO-NG (N = 1, 2, 3...) basis sets which uses finite sum of Gaussian 

functions to describe the atomic orbital results in several inadequacies that 

affect the accuracy of the calculations. Because the atomic orbitals in the 

STO-3G use fixed exponents, kiα  or orbitals of a given type are identical in 

size. For example, the px, py, pz atomic orbitals all have the same radial 

function, 
2rre α−  (Equation 2.50), and thus are identical, but this will not 



 24

give an accurate picture of the electron density for a particular atom within 

the molecule. Computational chemists have solved this problem by 

expressing each atomic orbital as a sum of two Slater-type orbitals that 

differ only in the value of their exponentsζ . The zeta value accounts for 

how diffuse the orbital is. For example, the 2s orbital is written as 

                             ),(),()( 22122 ζφζφφ rdrr STO
s

STO
ss +=                           (2.56) 

The Slater orbitals ),( 12 ζφ rSTO
s and  ),( 22 ζφ rSTO

s  represent different size 2s 

orbital. A linear combination of these two functions construct an atomic 

orbital whose size can range between that specified by ),( 12 ζφ rSTO
s  and 

),( 22 ζφ rSTO
s by varying the constant d. Such basis sets are called double-

zeta basis sets because each orbital in the basis set is the sum of two Slater 

orbitals that differ only in their value of the orbital exponents, ζ (zeta). 

2.3.2 Split Valence Basis Sets 

     In general, only the valence orbitals are expressed by a double zeta 

representation. The inner-shell electrons are still described by a single 

Slater orbital. For example, the electrons in the 1s atomic orbital on a 

carbon atom would be described by a single STO
s1φ  Slater orbital, where as 

the electrons in the 2s atomic orbital would be described by a linear 

combination of two STO
s2φ  Slater orbitals with different values of the orbital 

exponents, ζ. Such basis sets are referred to as split-valence basis sets. To 

facilitate the evaluation of the secular determinant, each Slater orbital in 
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the split valence basis set is expressed in terms of Gaussian functions. 

Thus, each of the two Slater orbitals, ),( 12 ζφ rSTO
s and ),( 22 ζφ rSTO

s , in 

Equation 2.56 is a linear combination of Gaussian functions. In principle, 

any number of Gaussian functions can be used to describe STO
s1φ and STO

s2φ  

[15]. 

2.3.3 Triple Zeta Basis Sets 

     Triple zeta basis set consists of three Slater orbitals with different 

values of zeta to fit one of the orbitals. The common triple basis set used is 

6-311G, where six tells us that the inner shell orbital is represented by a 

linear combination of six Gaussian functions. The 311 tells us that the 

valence orbitals are represented by triple zeta basis sets. In other words, 

every valence orbital is represented by three Slater orbitals. The smaller 

Slater orbital is represented by three Gaussian functions, and the other two 

Slater orbital are each represented by one Gaussian function [4, 5]. 

 2.3.4 Notations 

      The notations used to tell us the number of Gaussian functions used to 

describe the various Slater orbitals in a split valence basis set is N-MPG, 

where N is the number of Gaussian functions used to describe the inner-

shell orbitals, the hyphen indicates that this is a split valence basis sets and 

M and P designate the number of Gaussian functions that are used to fit 

STO
s1φ and STO

s2φ , respectively. Because ζ1 > ζ2 (by convention), M 

corresponds to the number of Gaussian functions used to express  the 
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smaller Slater orbital and P corresponds  to the number of  Gaussian 

functions used to express  the larger Slater orbital. The G simply tells that 

Gaussian functions are used. These basis sets are commonly referred to as 

Pople basis sets. For example, one popular basis set used extensively in 

computational chemistry is the 5-31G basis set.  For carbon atom in a 5-

31G basis set, the 5 tells us that the 1s orbital on the carbon atom (the 

inner-shell orbital) is given by a sum of 5 Gaussian functions. The hyphen 

indicates a split-valence basis set, telling us that the valence 2s and 2p 

orbitals are each represented by a pair of Slater orbitals. One of these 

Slater orbitals, the smaller one, is represented by a sum of three Gaussian 

functions (hence the 3), and the larger orbital is represented by a single 

Gaussian function, (hence the 1). Other Pople basis sets are 3-21G, 4-31G, 

4-22G, 6-21G, 6-311G, and 7-41G. The time required to evaluate the 

elements of the secular determinant depends upon the number of functions 

used. One of the most important decisions in performing any calculation is 

the choice of the basis set. The label 5-31G indicates that the Gaussian 

basis set for which the inner-shell (1s) orbitals described by a sum of 5 

Gaussian functions and the valence orbitals are described by a double-zeta 

representation where one Slater orbital (the smaller one) is represented by 

a linear combination of three Gaussian functions and the other Slater 

orbital (the larger One) is represented by a single Gaussian function. The 

1s orbital in the 5-31G basis set is given by the best fit of a sum of 5 

Gaussian functions to a single STO
s1φ  Slater orbital using ζ = 5.67.  Thus, 
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                                ∑
=

=
5

1
1111 ),(

i
si

GF
sisi

STO
s rd αφφ                                       (2.57) 

where the values for d1si and α1si for the carbon atom in the 5-31G basis set 

are given in Table 2.1 [15]. 

Table 2.1 The Coefficient and orbital exponents for the five Gaussian 
functions of the ground state carbon atom in 5-31G basis set. These values 
are determined by an optimal fit of a linear combination of five Gaussian 
functions to a Slater orbital with ζ = 5.67 

si1α  sid1  pisi 22 αα = sid 2  s2α  

1.264250 

1.901443 

4.312859 

1.194438 

3.651485 

5.473496

4.079115

1.812203

4.634825

4.524712

7.942731 

1.907238 

5.535774 

-1.207731

-1.697932

1.149812 

1.585120 

 

       The 2s orbital is described by a double zeta basis set, or a linear 

combination of two STO
s2φ  Slater orbitals, ),( 11 ζφ rSTO

s , ),( 22 ζφ rSTO
s  and of 

different orbital exponents, 21 ζζ > . The smaller Slater orbital,   

),( 11 ζφ rSTO
s is described by a linear   combination of 3 Gaussian functions,   

),( 22 ζφ rSTO
s is described by a single Gaussian function. Thus, 

                                ∑
=

=
5

1
22212 ),(),(

i
si

GF
ssi

STO
s rdr αφζφ                            (2.58) 
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                                ),(),( 2222 si
GF
s

STO
s rr αφζφ ′=                                      (2.59) 

   So the 2s orbital in 5-31G basis set is given by 

                       ),(),()( 222

3

3
2222 si

GF
ss

i
si

GF
ssis rdrdr αφαφφ ′′+=∑

=

                 (2.60) 

2.3.5 Polarized Basis Sets 

     Split valence basis sets allow orbitals to change size, but not to change 

shape [4]. Functions which are responsible for changing the shape are 

called polarization functions. They have higher angular momentum than 

the occupied orbitals. Polarized basis sets change the shape of the orbital 

by adding, for example, d functions to carbon atoms and f functions to 

transition metals. Some of them add p functions to a hydrogen atom. For 

example: 6-31G (d), 6-31G (d,p). The latter polarized basis set adds a p 

function to hydrogen atom, and d function to heavy atoms, and some 

scientists refer to them as 6-31G*, 6-31G**, respectively [5]. Many basis 

sets are just identified by the author's surname and the number of primitive 

functions. Some examples of this are the Huzinaga, Dunning, and 

Duijneveldt basis sets. For example, D95 and D95V are basis sets created 

by Dunning with nine s primitives and five p primitives. The V implies 

one particular contraction scheme for the valence orbitals [5]. 

 2.3.6 Diffuse Functions 

     For molecules which have electrons far from the nucleus: molecules 

with lone pairs, anions and other systems with significant negative charge, 
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diffuse function are used. The notation for the diffuse functions is as 

follow: single plus means that a diffuse function is added to heavy atoms 

such as 6-31+G(D), 6-31++G(D) adds diffuse function to hydrogen atom 

as well [22,23]. 

2.3.7 Basis Set Effects 

     A basis set is the mathematical description of the orbitals within a 

system (where the total electronic wave function is approximated by 

combination of these basis sets) [4]. Since electrons have a finite 

probability of existing anywhere in space, larger basis sets approximate the 

orbital more accurately by imposing fewer restrictions on the locations of 

the electrons in space (bigger is always slower and usually more accurate) 

[4, 22]. Any difference in results due to the quality of one basis set versus 

another are referred as basis set effects [23]. 

2.4 Electronic Structure Calculations  

     Electronic structure methods are based on the laws of quantum 

mechanics rather than classical physics [4]. This is, because the basis of 

electronic structure methods is the assumption that all chemistry can be 

described in terms of the interactions between electronic charges within 

the molecules [2]. There are two major classes of electronic structure 

methods: 
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2.4.1 Semi-Empirical Methods 

     Semi-empirical methods use parameters derived from experimental data 

to simplify the computations [4]. Several semi-empirical methods [2] are 

available and appear in commercially available computational chemistry 

software packages such as HyperChem and Chem3D [24]. 

2.4.2 Ab-initio Methods 

        The term ab-initio is given to computations that are derived directly 

from a theoretical principal with no inclusion from experimental data [5]. 

The term ab-initio implies that the computations are based solely on the 

laws of quantum mechanics, so it depends on  masses and charges of 

electrons and atomic nuclei,  the values of fundamental physical constants 

such  as  the  speed  of  light (c  = 2.998 X 108 m/s) or Planck's  constant  

(h  = 6.626 X 10-34 J·s) and contain no approximations [2]. This is an 

approximate quantum mechanical calculation [15]. The approximation 

here means that they use mathematical approximations such as how to find 

approximate solutions for a differential equation [1]. Ab-initio molecular 

orbital computations can provide accurate quantitative predictions of 

chemical properties for a wide range of molecular systems. However, they 

place a considerable demand on computer resources [2]. 

2.4.3 The Hartree-Fock Approximation 

     One of the most popular Ab-initio methods used in electronic structure 

calculations is the Hartree-Fock method (abbreviated HF) [15]. In this 
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method, the electron-electron repulsion term is taken into account [19].  

HF is useful in that it breaks the many-electron Schrödinger equation into 

many simpler one-electron equations [5]. In other words, the many 

electrons wave function ψ  is written as a product of one-electron function 

φ  for each of the N electrons [2, 25, 26]: 

                             )()....()(),...,,( 221121 NNN rrrrrr φφφ=Ψ                    (2.61) 

Which is known as a Hartree product [26]. 

Since the electronic Schrödinger equation 

                                ),()(),( RrRERrH eleceffelecelec Ψ=Ψ                    (2.62) 

Presents a multi-particle problem, approximations have to be considered 

for its solution. In the Hartree-Fock theory, the N particle wave function 

ψ  is described as an anti-symmetric product of N single particle 

functions )( ii rφ , the so called Slater determinant [27]: 
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Here each electron is described by a spin orbital )( ii rφ  which is a product 

of a spatial orbital )( ii xΨ  that depends on the position of the electron xi 

and a spin orbital )(ωα or )(ωβ  that depends only on its spin 
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coordinates. Assuming the spin-orbital )( ii rφ  form a complete 

orthonormal basis, they are determined by variation methods, i.e. the 

expectation value of the Slater determinant with the electronic 

Hamiltonian operator becomes a minimum [27]: 

                                              
∫
∫=

τψψ

τψψ

d

dH
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* ˆ
                               (2.64) 

This leads to the Hartree-Fock (HF) equations which give solutions to the 

orbital eigenenergies iε  and the spin-orbitals )( ii rφ  for each electron i 

[28]  

                                   NirrF iiiii ...,,1)()(ˆ == φεφ                         (2.65) 

The Fock operator F̂ , 
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Consists of the single particle operator 
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This describes the motion of a single electron in the field of the nuclear 

frame, and the Hartree-Fock potential which describes the interaction of 

each electron with all other electrons. HFV̂  is composed of the Coulomb 

operator jĴ  
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And the exchange operator jK̂  
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= ∫               (2.69) 

The first term of HFV̂  specifies an electron in the average field created by 

all other electrons. The second term arises from the anti-symmetric 

character of the Slater determinant in Equation 2.63.  Since the Fock 

operator acting on the spin-orbitals )( ii rφ  depends itself on these functions 

via the Hartree-Fock potential HFV̂ , an iterative method has to be used in 

order to solve the Hartree-Fock Equations 2.65. First, an initial guess of 

the spin-orbitals iφ  is used to calculate Ĵ  and K̂  and, hence, the Fock 

operator F̂ . Then, the Hartree- Fock equations are solved yielding new 

iφ which are again used to calculate a new Fock operator. This procedure, 

known as the self consistent field method, is repeated until convergence is 

reached [1, 15, 19]. 

2.4.4 The Limits of Hartree-Fock Method  

     Hartree-Fock theory is very useful for first level predictions of many 

systems. This is especially true for computing the structure and vibration 

frequencies of stable molecules and some transition states. However, it is 
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unsuitable for predicting accurate modeling of the reactions energy and 

bond dissociation because it is neglecting electron correlation [4, 15]. 

 

2.4.5 The Density Functional Theory  

      The development of the DFT method brought chemical accuracy at the 

beginning of the 1999's [29]. The progress in computer technology has 

made the DFT method the most powerful tool for the study of clusters, 

organometallics, and coordination chemistry. 

The importance of the density functional theory is emphasized by the fact 

that W. Kohn, one of the DFT creators, received the Noble prize in 

chemistry in 1998. He shared it with J.A Pople [30]. In a first principles 

approach, the molecules are considered as a collection of atomic nuclei 

and a number of electrons. The electronic structure of these molecules is 

obtained by solving the Schrödinger equation for the many-particle wave 

function of the electrons. All other properties of atoms and molecules can 

then be determined [31]. However, these approaches have serious 

limitations: 

◙ The resulting wave functions are complicated objects. 

◙ As the number of interacting objects increases, the computational 

effort rapidly increases, and for larger systems this approach 

becomes prohibitive [32]. 



 35

      An alternative approach to conventional ab-initio methods in quantum 

chemistry which has emerged in recent years is the Density functional 

method (DFT) [31, 32, 33]. Instead of the many body wave function, the 

one body density is used as fundamental variable [29, 31, 34, 35, 36], 

which is a function of only three spatial coordinates rather than 3N 

coordinates of the wave function. This makes density functional theory 

more feasible for large systems [37, 38]. The basic idea of the density 

functional theory is that the total ground state energy of an electron system 

can be written as a functional of the electron probability density )(rρρ =  

[39, 40]. The electronic energy is said to be a functional of ρ , [36], which 

means that for a given density function )(rρ  there is only one energy 

value. The idea that electron density, and not the wave function, is the 

important quantity dates back to the 1920's with the Thomas-Fermi model 

(also known as the Xα model). The developments gained steam in the mid 

60's with the arrival of a couple of articles of Walter Kohn and coworkers. 

In the first paper, Hohenberg and Kohn proved that the ground state 

energy (and all other ground state properties) of any system can be written 

as a function of electronic density. This provided the basis for modern 

Density Functional methods [13]. Unfortunately, the form of the functional 

dependence of the energy on the density )]([ rE ρ  is not given by the 

Hohenberg-Kohn theorem, it is confirmed that such a functional exists 

[39]. 
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Following the work of Kohn and Sham [41, 42], the approximate 

functional employed by current DFT method partition the electronic 

energy into several terms [4]: 

                                          XCJVT EEEEE +++=                            (2.70) 

Where TE  is the kinetic energy term arising from the motion of the 

electrons, VE  includes terms describing the potential energy of he nuclear-

electron attraction and of the repulsion between pairs of the nuclei, JE  is 

the electron-electron repulsion term, also described as the coulomb self-

interaction of he electron density, XCE is the exchange correlation term and 

includes the remaining part of the electron-electron interaction [31]. Note 

that all terms except the nuclear-nuclear repulsion are functional of the 

electron density ρ  [4]. XCE is divided into exchange and correlation 

functionals, corresponding to the same spin and mixed-spin interactions, 

respectively: 

                                            )()()( ρρρ cxXC EEE +=                         (2.71) 

 The components on the right hand side of the equation above can be of 

different types: local functional density (local density approximation LDA) 

when the electron system has constant density ("homogenous electron 

gas"). In other words, local functional density depends only on the electron 

density, while a gradient-corrected functional (non-local) depends upon 

the gradient (or higher derivatives of )(rρ ) for systems with varying 

density [20]. 
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     The local exchange functional (e.g. LDA) were developed to deduce 

the exchange energy of a uniform electron gas and thus has its 

shortcoming in describing molecular system [20]. In 1988, Becke 

formulated the gradient-corrected exchange functional based on the LDA 

exchange functional. It succeeded in remedying many of the LDA 

functional’s deficiencies. Similarly, local (e.g. Vosko, Wilk, and Nusair) 

and gradient-corrected (Perdew) correlation functionals exist and are 

widely used. Pure DFT methods are defined by pairing an exchange 

functional with a correlation functional. For example, BP86, BLYP [32]. 

In practice, self-consistent Kohn-Sham DFT calculations are performed in 

an iterative manner analogous to the SCF procedure described for HF [32]. 

The density may be approximately written in terms of a set of auxiliary 

one-electron functions, so-called Kohn-Sham orbital, as 
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The Kohn-Sham equations have the form [31] 
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Is similar to the Fock operator in the HF-approach. The corresponding 

potential )1(XCV  is given by a derivative of the energy XCE  with respect to 

the density ρ  [43] 
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=                               (2.75) 

According to the Gaussian user's reference, a Becke-style three-parameter 

functional (B3LYP: Becke 3 term, Lee Yamg, Parr) may be defined via the 

following expression [1,4]: 
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(2.76) 

Here the parameter 0C  allows any mixture of HF and LDA local 

exchange. In addition, Beck's gradient correction to the LDA exchange is 

also included, scaled by the parameter XC . Similarly, the VWN3 local 

correction function is used, and it may be optionally corrected by the LYP 

correlation correction via the parameter CC . In the formulation of the 

B3LYP functional, the parameters were determined by fitting them to the 

atomization energies in the G1 molecule set, the values are: 0C  = 0.2, 

XC = 0.72 and CC  = 0.81. XCE  cannot be evaluated analytically for DFT 

methods. Thus, in order to perform the numerical integration a grid of 

points in space must be employed. A crucial point in comparing different 

DFT-results based on the same functional is the quality of the chosen 

integration grid [4]. Density functional theory with gradient-corrected 



 39

exchange-correlation functional has proved to be a reliable tool to perform 

electronic structure calculations on transition metal complexes at a 

moderate cost [44, 45]. 
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Chapter 3 

Software Packages and Computational 

Methodology 

3.1 Gaussian 98 Software 

      Computer programs which perform SCF (self-consistent field) 

calculations are widely available. The most common being those 

developed by J.A Pople and co-workers under the GAUSSIAN label [5]. 

Gaussian 98 [46] is a connected system of programs for performing a 

variety of semi-empirical and ab-initio molecular orbital (MO) 

calculations. The essential input data for such programs are the molecular 

geometry (including the specification of the constituent atoms), the basis 

set, the net charge of the system and the spin multiplicity. The output from 

such programs will consist of the total energy, the orbital energy and wave 

functions, and a population analysis [5]. 

  Gaussian 98 is capable of predicting many properties of molecules and 

reactions, including [4]: 

◙ Molecular energies and structures 

◙ IR and Raman spectra 

◙ Bond and reaction energies 

◙ Energies and structures of transition states 
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◙ Vibration frequencies 

◙ Thermo chemical properties 

◙ Reaction pathways 

◙ Molecular orbitals 

◙ Atomic charges 

◙ Multipole moments 

◙ NMR shielding and magnetic susceptibilities 

◙ Vibration circular dichroism intensities 

◙ Electron affinities  and ionization potentials 

◙ Polarizabilities and hyperpolarizabilities 

◙ Electrostatic potentials and electron densities 

     Computations can be carried out on systems in the gas phase or in 

solution, and in their ground state or in an excited state. Thus, Gaussian 98 

can serve as a powerful tool for exploring areas of chemistry such as   

constituent effects, reaction mechanisms, potential energy surfaces, and 

excitation energies [4]. 

3.1.1 Running Gaussian 98  

     The following steps are necessary to run Gaussian 98 in windows. 

(Gaussian also can be run in all the workstations and supercomputer 

versions): 

◙ Start the program 
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◙ Load or enter Gaussian Input. 

◙ Start execution of the job. 

◙ Examine and interpret the output. 

  Start the program by double clicking on the Gaussian 98W icon. The 

main window is now open (Figure 3.1). 

Provide the program with the inputs it need. The menu is used to create a 

new input file or to modify existing ones. 

The route section specifies the procedure and basis set we want to use for 

the calculation ((Figure 3.2). 

 The title section of a Gaussian input file contains a description of the job. 

The charge and multiplicity section of the input file specify the charge on 

the molecule and its spin multiplicity. Each one of them is entered as an 

integer with one space separating them. Spin multiplicity refers to the 

arrangement of electrons within the molecules. This is given by the 

equation 2S+1, where S is the total spin of the molecule.  

    Molecular Specification section specifies the type and the position of 

each of the atom in the molecule: Gaussian accepts molecular 

specifications in several different formats: 

Cartesian coordinates: Cartesian coordinate input consists of a series of 

lines of the form: 

Atomic-symbol  X-coordinate          y-coordinate         z-coordinate 
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Figure 3.1 Main program windows 
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Figure 3.2 Job entry windows  

. 

The molecular structure for Cr(CO)6, expressed in Cartesian coordinate is 

shown in Figure 3.3 

 

Figure 3.3 Cartesian coordinates of Cr(CO)6   

 

Z-matrix format ( internal coordinates): 
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A Z-matrix specifies the locations of, and bonds between atoms using 

bond lengths, bond angles, and dihedral angles. Each atom in the molecule 

is described on a separate input line within the Z-matrix. 

After the data entry, select run, and save the results from the file menu. 

When the program terminates the calculation, it will display “normal 

termination of Gaussian 98W". The output of the calculation is saved in 

the text file with the same name as you typed. 

3.1.2 Using Gaussian Checkpoint 

      The Gaussian computational chemistry program allows the results of a 

calculation to be saved in a machine readable file, called a checkpoint file. 

This saved checkpoint file can be used for later use in another Gaussian 98 

job for use by a visualization program to restart a failed job. 

     It is a good idea to make a backup copy of the check point files, 

because sometimes the checkpoint file will be corrupted while the program 

writes to it. Unless you specify a name for the checkpoint files, the 

program will delete this file at the end of successful run. 

Gaussian will use a checkpoint file if the command 

    Chk = file-name 

appears before the route section in the input file. If the specified file does 

not exist, the program will create it.  In such case, the file will be saved in 

the current directory. But if one wants to save the file in alterative location, 
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the path of the directory where the checkpoints file to be saved must be 

specified. 

3.1.3 Checkpoint File Utilities 

     c8694 can be used to convert a checkpoint file from an old format to 

the Gaussian 98 format. It is given a single argument, which is the name of 

the checkpoint file. The file is overwritten by a new file with the same 

name. 

    chkchk is a utility provided with the Gaussian distribution. It extracts 

the title and route sections from a checkpoint file. The command usage is 

chkchk file-name 

where file-name.chk is the name of a checkpoint file in the current 

directory. 

 chkmove It is used to move checkpoint files between machines of 

different architecture. 

3.2 Chem3D 

     Chem3D is an application designed to enable scientists to model 

chemicals. It combines powerful building, analysis, and computational 

tools with an easy-to-use graphical user interface, and a powerful scripting 

interface. Chem3D provides computational tools based on molecular 

mechanics for optimizing models, conformational searching, molecular 

dynamics, and calculating single point energies for molecules [47] 
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     Chem3D can read a wide variety of popular chemical structure files, 

including Gaussian, Macro Model, MDL, MOPAC, PDB, and SYBYL. 

Two-dimensional structures imported from ChemDraw or ISIS/Draw is 

automatically converted to three-dimensional structures. The Chem3D 

native file format contains both the molecular structure and results of 

computations. Data can be exported in a variety of chemical-structure 

formats and graphics files. 

     Chem3D has both graphic and text-based structure-building modes. 

Structures can be generated graphically by sketching out the molecule. The 

builder creates carbon atoms, which can be edited by typing text to 

substitute other elements or functional groups. As the structure is built, the 

valence is filled with hydrogen atoms and typical bond lengths and angles 

are set. Several hundred predefined functional groups are available and 

users can define additional ones. The text-based mode allows the user to 

input a simple text string (similar to SMILES, but not identical). This text 

mode can be used to build structures entirely or to add functional groups 

[5]. 

3.2.1 Viewing Gaussian Structures with Chem3D 

     With Chem3D, we can View the structures after a Gaussian calculation 

is terminated. In this procedure, use the Gaussian utility formchk to create 

a formatted checkpoint file.  In the Chem3D file top menu select open.  In 

the dialog box that appears select Gaussian Checkpoint. Then browse for 

the formatted checkpoint file created earlier and open. 
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3.3 Computational Details  

     The ab-initio and DFT calculations were performed using Gaussian 98 

program. The model of the molecules is drawn by ChemDraw and 

Chem3D packages. Each figure is saved as PDB (protein data bank) file 

format, which can be opened by Gaussian Program to carry out the needed 

computation. The first stage of the Gaussian calculations was done using 

HF procedures. It involved geometry optimizations at HF/6-311G (D) and 

calculation of vibration frequencies. The geometry is reoptimized at 

DFT/6-311G(D), The Vibration frequencies of the carbonyls in molecules 

under study have been also calculated using the DFT/6-311G (D) to 

compare the results.  All computations were run on Gaussian 98 as 

follows: 

◙ Using the formchk Utility provided by Gaussian 98 to generate a 

formatted version of the checkpoint file which can be accepted by 

Chem3D. 

◙ The optimized geometry of the complex is drawn by Chem3D, 

using the built in Gaussian job to create input file. 

◙ This input file then entered to Gaussian to perform frequency 

calculations. 

◙ Results of the calculations were interpreted using molkal package 

molecules. Harmonic vibration frequencies were calculated using 

the Hartree-Fock and density functional B3LYP (Becke's three 
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parameter exchange functional methods) [5], in combination with 

either the triple-split-valence polarized 6-311G* or the LANL2DZ 

basis set. The 6-311G* basis set was chosen since it has recently 

been extended to include the first row transition elements [5]. 

While the LANL2DZ basis set is available for many of the 

heavier elements. Thus, both the 6-311G* and LANL2DZ basis 

sets can be used in calculations involving transition metal 

elements. 

 The issue which affects the calculations time is how the integrals are 

evaluated. There are several common methods: 

• Conventional Calculations all the integrals are evaluated 

at the beginning of the calculations and stored in a file on a 

computer hard drive. This file is then accessed as the 

integrals are needed for each iteration of the self-consistent 

field calculation. 

• Direct Calculations all the integrals are evaluated as they 

are needed and not stored at all. 

• In Core Calculation an algorithm which computes all the 

needed integrals and then keeps them in ram memory rather 

than on a disk file. 

In core calculations are always the fastest calculations because ram 

memory can be accessed much faster than the disk files. 
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3.4 Procedure 

There are several procedures that can be carried out with any ab-initio 

program. We will restrict ourselves here to three: 

⇒ Single point calculations 

⇒ Geometry optimization 

⇒ Frequency calculations 

3.4.1 Single Point Calculations 

     In this procedure, energy, wave function, and other requested properties 

at a single fixed geometry can be calculated. This procedure is normally 

done for new molecules to check the nature of the wave function, and 

hence to start the geometry optimization from this point. Single point 

calculations also can be used to compute very accurate values of the 

energy and other properties of the molecule which has been optimized at a 

lower level of theory. Single point calculations can be performed at any 

level of theory with small or large basis sets [4]. 

3.4.2 Geometry Optimization 

     Geometry Optimization is a technique used by computational chemists 

to minimize the molecule energy iteratively using geometric 

approximations. A small change in the structure of the molecule will 

produce a difference in its energy and other properties [4]. Geometrical 

optimization seeks to minimize the potential energy surface. "A potential 

energy surface is a mathematical relationship linking molecular structure 
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and the resulting energy". The way the energy of a molecule system varies 

with small changes in its structure is specified by its potential energy 

surfaces. For a diatomic molecule, the potential energy surface is a two 

dimensional plot with the internuclear separation on the x axis". (See 

Figure 3.4) [4]. 

 

Figure 3.4 Potential energy surfaces 

     This sort of drawing considers only one degree of freedom within the 

molecule. There are two minima on this potential surface. A minimum is 

the bottom of a valley on the potential surface. A minimum can be a local 

minimum or a global minimum. 

     A geometry optimization begins at the molecular structure specified as 

the input. The energy and the gradient are computed at that point. The step 

size directions along the potential energy surface are determined for the 

next step [4].  
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 Preparing Input for Geometry Optimizations 

     The Opt keyword in the route section requests a geometry 

optimization. This is done using the basis set and a level of theory 

specified by other key words. 

3.4.3 Optimization Algorithm 

     There are many different algorithms for finding the set of coordinates 

corresponding to the minimum energy. These are called optimization 

algorithms because they can be used equally well for finding the minimum 

or maximum of a function. If only the energy is known, then the simplest 

algorithm is one called the simplex algorithm. This is just a systematic 

way of trying larger and smaller variables for the coordinates and keeping 

the changes that result in a lower energy. Simplex optimizations are used 

very rarely because they require the most CPU time of any of the 

algorithms discussed here. A much better algorithm to be used when only 

energy is known is the Fletcher-Powell (FP) algorithm. This algorithm 

builds up an internal list of gradients by keeping track of the energy 

changes from one step to the next. The Fletcher-Powell algorithm is 

usually the method of choice when energy gradients cannot be computed. 

If the energy and the gradients of energy can be computed, there are a 

number of different algorithms available. Some of the most efficient 

algorithms are the quasi-Newton algorithms, which assume a quadratic 

potential surface. One of the most efficient quasi-Newton algorithms is the 

Berny algorithm, which internally builds up a second derivative Hessian 
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matrix. Steepest descent and scaled steepest descent algorithms can be 

used if there is not a reasonable assumption [48]. Another good algorithm 

is the geometric direct inversion of the iterative subspace (GDIIS) 

algorithm. Molecular mechanics programs often use the conjugate gradient 

method, which finds the minimum by following each coordinate in turn, 

rather than taking small steps in each direction. The Polak-Ribiere 

algorithm is a specific adaptation of the conjugate gradient for molecular 

mechanics problems. Algorithms using both the gradients and second 

derivatives (Hessian matrix) often require fewer optimization steps but 

more CPU time due to the time necessary to compute the Hessian matrix. 

In some cases, the Hessian is computed numerically from differences of 

gradients. 

These methods are sometimes used when the other algorithms fail to 

optimize the geometry. Some of the most often used are eigenvector 

following (EF), Davidson-Fletcher-Powell (DFP), and Newton-Raphson 

[5]. 

3.4.4 Frequency Calculations 

     The vibration states of the molecules can be observed by infrared and 

Raman spectroscopy, which can help in determining the molecular 

structure. But for large molecules, there is difficulty due to large number 

of closely spaced peaks. To overcome this problem, computer simulation 

is used to calculate the vibration frequencies of molecules.  We carry out 

frequency calculations for different purposes [4]: 
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⇒ To predict IR and Raman spectra of molecules (frequency 

and intensities).  

⇒ To compute force constants for a geometry optimization. 

⇒ To identify the nature of stationary points on the potential 

energy surface. 

     When the calculation are performed to compute the Energy and to 

optimize the geometry, the quantum chemical programs ignore the 

vibrations in molecular systems [4]. In this approach, the computations 

consider an idealized view of nuclear position. In reality, the nuclei in the 

molecules are constantly in motion. In equilibrium states, these vibrations 

are regular and predictable since molecular frequencies depend on the 

second derivatives of the energy with respect to the nuclear position. The 

molecules can be identified by their characteristic spectra. 

      Frequency calculations are valid only at stationary points on the 

potential energy surface. Thus, frequency calculations should only be 

carried out at the geometry obtained from an optimization run and with the 

same basis set and method. Any other calculation will give meaningless 

results [4]. 

Input for Frequency Jobs 

     In order to carry out frequency calculations, you have to include the 

Freq keyword in the route section. The other sections of the input files are 

the same as those considered for geometry optimization. 
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Chapter 4 

Reactivity and Bonding of Metal Carbonyl 
Complexes 

 

4.1 Introduction 

The discovery of Ni(CO)4 in 1890 by Mond, Carl Langer and 

Quinke by accident [49], started chemical research which led to the 

preparation of a large number of metal carbonyls, such as Fe(CO)4, 

Fe(CO)9, Mo(CO)6, W(CO)6 and Cr(CO)6 in recent years [10]. Metal 

carbonyls are compounds in which a bond exists between a carbon atom of 

the carbonyl group and a transition metal. They play a very important role 

in chemistry and chemical industry. This field which combines aspects of 

organic and inorganic chemistry has many important applications [8]. For 

example, Fe(CO)5 was used as an anti-knock agent in motor fuels. Even 

though lead tetraethyl is a better anti-knock agent, iron carbonyl is less 

poisonous [10]. The transition metals have partially filled d or f orbitals. 

They react with a variety of molecules or groups, called ligands, to form 

transition metal complexes. In forming a complex, the ligands denote 

electrons to vacant orbital of the metal. The bond strengths between the 

metal and the ligand range from very weak to very strong [8]. Studying the 

effect of the ligands on the reactivity of the metal complex plays a central 

role in inorganic chemistry, since changing the ligand bonded to the metal 
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will change the complex reactivity [10]. A well-known feature of metal 

carbonyls is that they are more stable when they have the electronic 

configuration of a noble gas, i.e., the total number of electrons around the 

metal is 36, 54, or 86 corresponding to the atomic numbers of the noble 

gases Kr, Xe, and Rn. In this case the metals are said to have the effective 

atomic number of the noble gases or to obey the 18-electron rule [10]. 

4.2 Carbonyl Complexes 

Organometallic chemistry plays an important rule in industry and 

medicinal fields [49].  Carbonyl complexes are compounds that contain 

carbon monoxide as a coordinated ligand. Carbon monoxide is a ligand 

that forms complexes with most transition metals [50]. Carbon monoxide 

does form strong bonds to transition metals; this is due in part to the 

synergistic nature of its bonding to transition metals [18]. To consider why 

carbon monoxide forms such a strong bond, let us look at its structure and 

the bonding orbital:  The nature of the carbonyl bonding to the metal and 

related complexes can be described as consisting of two components: 

◙ The carbonyl group possesses a sp-hybrid lone pair of 

electrons which will form σ -bond by the overlap with the 

transition metal d orbital as shown in Figure 4.1 [10].   

◙ The excess electron density around the metal center is 

donated back to the empty orbital of the CO which is 

called π  Back-bonding as shown in Figure 4.2.  σ and π  

bonding reinforces each other.  
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Back-bonding is important when the metal has many electrons to dissipate, 

which make the low oxidation state of the metals stabilized by back-

donation to the ligand [50]. 

 
Figure 4.1 σ -bonding, orbitals overlap in M-CO bonding. Arrow shows 
direction of electron flow, ligand to metal σ bonding 
 
 
 

 
Figure 4.2 π back-bonding. Metal-to-ligand π back-bonding. 

 
 
 

The two components of this bonding are synergistic. The more 

sigma donation by the carbonyl or other sigma-donors on the metal center, 

the stronger the π  back-bonding interaction. Notice that although this 

involves the occupation of an *π orbital on the CO, it is still a bonding 

interaction as far as the metal center is concerned. It is generally 

understood that the decrease in vibration frequency of CO on metal 

carbonyl is due to π  back-donation from d-block metals, leading to a 

weak C-O bond [49].  In other words, the IR absorbances of metal 

carbonyl are strongly affected by changes in electronic structure at the 
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transition metal center. This hypothesis was based on CO stretching 

frequency, where there is a decrease in the vibration frequency of CO on 

metal carbonyl. This decrease is due to π back-donation from d-block 

metal which causes a reduction in the bond order of C-O [49, 50]. 

4.3 Phosphine Ligands 

Phosphine ligands have the general formula PR3, where R = alkyl, 

aryl, H, halide etc. Phosphine ligands are neutral two electron donors that 

bind to transition metals through their lone pairs. In addition, phosphine 

forms  π  back-bonding to the metal. For example, the PCl3 group is an 

electron attracting  

 

Figure 4.3 σ donating of the phosphine lone pair to an empty metal orbital 

 

group because it is a good π  acceptor [50]. The bonding between the 

phosphine ligands and metals is like the bonding between carbonyl ligands 

and metal. This bond has two components:  

◙ The primary component is sigma donation of the 

phosphine lone pair to an empty orbital on the metal as 

shown in Figure 4.3.   
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◙ The second component is back donation from a filled 

metal orbital to an empty orbital on the phosphine ligand   

as shown in Figure 4.4 [50]. 

     In general, the electronic properties of the ligands depend on their 

molecular parts.  Changing the molecular parts of a ligand change its 

electronic properties. Strohmeier showed that phosphorus ligands can be 

arranged in a series based on the CO stretching frequencies [10]. His  

 

Figure 4.4 Back donations from a filled metal orbital to an empty d orbital 
on the phosphine ligand   

arrangement was based on the hypothesis that the CO stretching frequency 

depends upon the CO bond order which depends upon the nature of other 

ligands bonded to the metal center. As the ligand donates electrons to the 

metal center, the metal donates electrons to the CO *π orbital causing a 

reduction in the CO bond order and hence a reduction in the IR stretching 

frequency [49, 50]. For example, Horrocks and Taylor described a series 

of ligands according to their ability of π  acceptor. Some of these ligands 

are listed below [10] 

CO > PF3 > PCl3 > P (OPh)3 > pph3 
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According to the X-ray crystallographic and infrared data, the order of 

decreasing π -acceptor ability is [51]: 

CO > PCl3 > PH3 > PPh3 

  From the above discussion, we can conclude that the trend of the order of  

π  back bonding ability is 

CO > PF3 > PCl3 > PH3 

  Some ligands have no π  acceptor properties. They do have σ  donating 

properties. For example, nitrogen in amine and oxygen in ether [10]. 

Clearly, different ligands have different electronic properties. This causes 

them to bond differently to the metal center. As shown earlier the carbonyl 

bond by both σ  bonding and π back-bonding. However, there is a great 

deal about the nature of back bonding of phosphines with transition metals. 

The empty phosphorous orbital which accept the electrons from the metal 

filled d orbital which known as π back-bonding has been described as 

being either a d-orbital or an anti-bonding σ orbital. In the PX3 systems 

with X = H, CH3, or F, Marynick's [52] molecular orbital calculations 

indicated that π -acceptor orbital on phosphorus mostly consists of 

phosphorus 3p character, i.e. the back bonding takes place through the *σ  

orbital of the sigma* of P-X bond for ligands such as PF3 and PH3. By 

studying a series of complexes of the type RCr(CO)5, with R = H, CH3, 

PH2, OH, using ab-initio calculation and density functional calculations, 

Creve, Pierloot, Nguyen and Vanquicken borne showed that one p orbital, 

perpendicular to the P-R bond  and doubly occupied, is used to form a σ  
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bond with the empty d orbital of the Cr(CO)5 fragment. The remaining p 

orbital of PR is suitable to π  back-bonding with the occupied d(Cr) orbital 

[53]. The donor and acceptor of these ligands are influenced by the 

identity of R [50]. When the R group in the phosphine ligands is an 

electron-withdrawing (electronegative) groups, the σ -donating capacity of 

the phosphine ligand to the metal tends to decrease, and theπ -back 

bonding ability is promoted by electron withdrawing groups such as F and 

Cl [50]  

4.4 Trans-Effect (TE) 

4.4.1 Introduction   

     The idea of Trans-influence and the related Trans-effect are crucial in 

modern inorganic chemistry. A coordinate ligand can exert a profound 

influence upon the metal-to-ligand bonding and stability of other ligands 

within a complex, particularly those in a trans position to this ligand [54]. 

The majority of work on TE was concentrated on square planar complex. 

The Trans-effect in octahedral complexes is not as well explained as in the 

square planar complexes and will be discussed right now. 

4.4.2 Background 

      One of the first theoretical descriptions of TE was the   polarization 

theory suggested by Grinberg in 1932 [54]. This theory state that a build 

up of negative charge on the metal induced by the polarizable donor group 

repels the negative charge in the trans ligand, and weakens the trans bond. 
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In 1948, Syrki explain the TE differently. He included hybridization at the 

metal, in which he suggested that opposing metal-ligand bonds will 

compete for the available s and d orbitals. The early theoretical treatments 

of TE considered only σ -bond. Later, Orgel took into account metal-

ligand π -bonding [54]. But when π back-bonding was taken into account, 

it must be noted that not all metals will be able to make π -back bonding 

such as Nd. Orgel explained this by invoking transition state stabilization 

by such π -acceptor ligands. In 1969, Bright Ibers invoked steric effects 

where the structure of the complex is strongly affected by the steric 

repulsion of the cis ligand.  Tolman has shown that the steric and 

electronic properties ligands influence reactivity of transition metal 

complexes [54]. The effect of the steric properties on the reactivity of 

metal carbonyl result from non-bonding forces between parts of the 

molecule. Changing the ligands will change the molecule electronic 

properties which affects the electronic properties [10].  It’s now clear that 

a complete understanding of TE must account for both electronic effects 

an also, steric factors. The former require consideration of both σ  and 

π back-bonding properties of both the metal center and ligands, while the 

later are usual most important for ligands which are cis to each other. The 

presence of certain ligands trans to a leaving ligand in a substitution 

reaction lowers the activation energy relative to that when other ligand is 

in the trans position. The lowering can be accomplished in either of two 

ways: 
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◙ By raising the energy of the reactant’s ground state 

◙ Or by lowering the energy of the transition state 

Good Trans-directing ligands must act in on both of these ways [50]. 

 4.4.3 Structural Trans-effect (STE) In Octahedral Metal Complexes  

     The Trans-influence also termed Structural Trans-effect, describes the 

ability of a ligand to weaken (and lengthen) the bond trans to it in 

preference to those in cis position [54]. It is known that the Trans-

influence is a ground state effect [50]. In other words, STE depends on the 

electronic properties of the ligand bonded to the metal. The better donor 

ligand will stabilize the transition state and therefore increase the rate of 

dissociation of the trans ligand [10]. Better π -acceptor ligands reduces the 

bonding between the ligand trans to it and the metal center. So there is 

reversibly relation between the bonding of the ligand and the metal, and 

the trans ligand and the metal. As the π -acceptor of the ligand increases, 

the electron density between the trans ligand and the metal center 

decreases. This weakens the bond between the trans ligand and the metal, 

resulting in an increase in the rate of trans ligand dissociation [10]. 

4.5 Kinetic Trans-effect (KTE) in Octahedral Metal Complexes 

     Although a STE destabilizes a complex in the ground state, this will 

enhance reactivity towards ligand substitutions only if there is no effect on 

the energy of the transition state. This is sometimes the case for 

dissociative activated substitutions. The STE and KTE ligand series of a 
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particular complex will then be similar. However, if the transition state 

energy is affected by the ligand in question, then there may be no 

correlation between STE and KTE. In other words, when the ligand has a 

donating ability, the transition state will be stabilized, and the activation 

energy will be decreased, only then will the KTE be dominated [54]. 
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Chapter 5 

Results and Discussion 

5.1 Structure and Energy of Cr (CO) 6 

     In this section, a detailed analysis of the energetics and electronic 

structure Of Cr(CO)6 were carried out using HF and DFT methods with 

various basis sets. The results of these calculations are compared with the 

reported experimental values [55]. Table 5.1 shows the predicted Cr-CO 

and C-O bond lengths of the ground state geometries of Cr(CO)6 obtained 

by HF calculations using different basis sets, together with the 

experimental values. The optimized structure is shown in Figure 5.1 

Table 5.1 Theoretical predictions of total energies, and bond length of 
Cr(CO)6  at HF level of theory with various basis sets 

Model r(Cr-CO) Å r(CO) Å Energy (Hartree) 

HF/STO-3G 

HF/3-316G 

HF/6-311G 

HF/6-311G(D) 

HF/LANL2DZ 

Exp 

1.79 

1.93 

2.078 

2.002 

2.078 

1.92a 

1.17 

1.13 

1.145 

1.112 

1.145 

1.141b 

-743.40 

-1710.78 

-743.40 

-1719.77(-1719.852)c 

-743.40 

a[55], b[55], c[7] 
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Figure 5.1 Optimized Structure of Cr(CO)6 at HF/6-311G(D), bond length 
is in Å. 

     The results in Table 5.1 show HF is not adequate. This is due to lack of 

electron correlation. Table 5.2 shows the Cr-CO and C-O bond lengths 

obtained by DFT calculations using different basis sets, together with the 

experimental values. The optimized structure is shown in Figure 5.2.  

Table 5.2 Theoretical predictions of total energies, and bond length of 
Cr(CO)6 at DFT with various basis sets 

Model r(Cr-CO) Å  r(CO) Å Energy (Hartree) 

B3LYP/3-21G 

B3LYP/6-31G 

B3LYP/6-311G(D) 

EXP 

1.881 

2.078 

1.922 

1.92a 

1.165 

1.145 

1.141 

1.141a 

-1715.80 

-743.40 

-1724.74 (-1722.649)b 

a[55], b[7] 
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Figure 5.2 Optimized Structure of Cr(CO)6 at DFT/6-311G(D), bond 
length is in Å 

 

The calculated r(CO) bond length values in Table 5.2 indicate that the 

maximum deviation of the calculated values from the experimental data is 

0.004 Å when the 6-31G basis set is used. The observable effect occurred 

in the right direction when 6-311G(D) basis set is used, shortening the CO 

bond by 0.004 Å. 

 Clearly from Table 5.1 and Table 5.2, the geometry obtained with DFT 

method are in reasonable agreement with those reported experimentally. It 

is clear from Table 5.2 that DFT level of theory with triple-split-valence 

polarized 6-311G (D) basis set produces much better results than the other 

basis set. Accordingly, in the rest of this work, DFT level of theory, with 

6-311G (D) basis set will be used.   
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5.2 Predicted Geometry of Cr(CO)5pip 

     The geometry of the Cr(CO)5pip and vibration frequencies were  

calculated using DFT combined with different basis sets.  Table 5.3 shows 

the predicted geometry of the optimized structure, and Figure 5.3 shows 

the optimized structure. 

Table 5.3 Optimized structure of Cr(CO)5pip and the corresponding 
energy parameter using DFT with different basis sets 

Model r(Cr-N) Å r(Cr-CO)(trans) Å CO(trans)  CO(cis)

B3LYP/6-311G(D) 

B3LYP/LANL2DZ 

B3LYP/3-21G 

2.285 

1.256 

2.214 

1.864 

1.858 

1.822 

1.151 

1.183 

1.174 

1.147 

1.18 

1.172 

 

 

Figure 5.3 Optimized structure of Cr(CO)5pip using DFT with 6-311G(D) 

 

The trans CO bond length in the optimized structure of Cr(CO)5pip using 

DFT with 6-311G(D) equals 1.151 Å. This is greater than the 
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corresponding bond length in Cr(CO)6 (1.141 Å) optimized structure at the 

same level of theory with the same basis set. Also the trans Cr-CO bond 

length in Cr(CO)5pip equals 1.864 Å. This is smaller than the 

corresponding bond length in Cr(CO)6 (1.922 Å). This result can be 

explained as follows: Since pip is an electron donor to the metal, the metal 

center becomes electron-rich. The metal will then donate electrons to the 

trans CO as π back-bonding. This will strengthen the bond between the 

metal and CO, and decrease the bond between the C and O. This result can 

be seen from a different point of view, by comparing the vibration 

frequencies of CO in both compounds. The experimental ν {CO}s for 

Cr(CO)6  = 2000 cm-1, and the calculated ν CO for the trans CO in 

Cr(CO)5pip = 1941 cm-1, and 1944 cm-1. This decrease in vibration 

frequencies for the trans CO in Cr(CO)5pip is due to the π  back-donation 

from d-block metal.  

5.3 Vibration Frequencies for Cr(CO)5pip  

      Table 5.4 shows raw vibration frequencies, computed at the DFT level 

of theory with 6-311G (D) basis set with the corresponding intensity. Raw 

frequencies computed at the HF, DFT contain known systematic error due 

to the neglect of electron correlation. Therefore it is usual to scale 

frequencies predicted at HF, DFT by an empirical factor. A typical scale 

factor for DFT calculation is 0.96 [4]. 
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Table 5.4 Calculated frequencies of trans CO in Cr(CO)5pip at B3LYP 
with 6-311G(D) 

Calculated IR Intensity

2136 )1(
1A  

2025 E 

2026 E 

2022 )2(
1A  

91 

1910 

1894 

950 

 

The scale factor will vary from one basis set to another. In this study, a 

constant scale factor will be used with y = mx where m is the slope of the 

line, x take its value from the calculated frequencies and y is the scaling 

frequencies. This scale factor can be derived from running out a linear 

regression on all data points, while forcing the regression line through the 

origin (0,0). In other words, constant scale factor is the slope of the line 

which fit the experimental frequencies to the calculated frequencies at a 

given basis set, Figure 5.4. The data obtained using DFT with 6-311G (D) 

will be used in this process. There are many packages which can do this 

such as Excel, Lab Fit programs. Here, Lab fit program will be used. The 

computed scale factor is 0.960. As a result, the scaled frequencies vs the 

experimental frequencies are given in Table 5.5  
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 Figure 5.4 Experimental data vs. B3LYP data with applied scale 

factor 

Table 5.5  Unscaled frequencies, scaled frequencies, intensity, 
experimental frequencies of CO in Cr(CO)5pip 

Unscaled frequencies IR intensity Scaled frequencies  Expa 

2136 )1(
1A  

2025 E  

2026 E  

2022 )2(
1A  

91 

1910 

1894 

950 

2050 )1(
1A  

1944 E  

1945 E  

1941 )2(
1A  

2068 )1(
1A  

1933 E  

 

1916 )2(
1A  

a[57] 

It is clear that the density functional theory gives good correlation with 

experimental data.  
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5.4 Structure and Properties of ( 1η -chlorobenzene)Cr(CO)5 

   In this section, the ground-state geometry of ( 1η -chlorobenzene)Cr(CO)5 

had been optimized using DFT level of theory, with the 6-311G(D) basis 

set. The optimized structure of this compound is shown in Figure 5.5. The 

selected optimized parameters are given in Table 5.6. From Table 5.2, the 

bond length between Cr and CO in the optimized structure of Cr(CO)6 at 

DFT/6-311G(D) equals 1.922 Å, whereas the bond length between C and 

O equals 1.144 Å.  

 
Figure 5.5 The optimized structure of the ( 1η -chlorobenzene)Cr(CO)5 
using DFT with 6-311G(D) basis set  
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Table 5.6 Theoretical predictions of the bond length of ( 1η -
chlorobenzene)Cr(CO)5 using DFT level of theory with 6-311G(D) basis 
set 

 bond length Å

Cr-Cl 

Cr-COa 

Cr-COb

C-Oc 

C-Od 

2.658 

1.835 

1.916 

1.15 

1.144 

a; trans CO, b; average bond length of cis CO, c; trans CO, d; average 
bond length of cis CO 

When one of the CO is replaced by CB, (Figure 5.6), the bond length 

between Cr and the trans CO equals 1.853 Å. The bond length between C 

and O in the trans carbonyl equals 1.15 Å. This decrease of the trans Cr-

CO bond length and increase in the trans CO bond length in ( 1η -

chlorobenzene)Cr(CO)5 is due to π  back-donation to the trans CO. Since 

CB donates its electrons in the halogen to the metal, the metal center 

becomes electron-rich, and to compensate for this, it will donate electrons 

to the trans CO as π back-bonding. This will strengthen the bond between 

the metal and CO, and decrease the bond between the C and O in the trans 

CO. The CB ligand also enhances Cr-CO back-bonding to the equatorial 

CO ligands (Figure 5.6). This results in equatorial Cr-CO bond lengths that 
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are slightly shorter in ( 1η -chlorobenzene)Cr(CO)5 (1.916 Å) than in 

Cr(CO)6 (1.922 Å). 

 

Figure 5.6 Schematic representation of Cr(CO)6 and Cr(CO)5CB 

 

By comparing the vibration frequencies of CO in both compounds. The 

carbonyl stretching frequencies in ( 1η -chlorobenzene)Cr(CO)5 are 1939 

cm-1, 1954 cm-1, 1955 cm-1, 1981 cm-1. These values are lower than  the 

carbonyl stretching frequency in Cr(CO)6 which is equal to 2000 cm-1, this 

indicates that the CO bond length in ( 1η -chlorobenzene)Cr(CO)5 is 

stronger and shorter than the corresponding one in Cr(CO)6. 

5.4.1 Carbonyl Frequencies of ( 1η -chlorobenzene)Cr(CO)5 

      For the carbonyl frequencies of the Cr(CO)5CB, the program gives 4 

values which are given in the Table 5.7 with the corresponding IR 

intensity, and the experimental values. 

One of the calculated frequencies is doublet and the other two are singlet. 

These values are in agreement with the metal carbonyls IR active modes of 

the mono substituted. Figure 5.7 shows the possible stretching mode of 

vibrations for several metal complexes. For example, Table 5.7 shows that 

for monosubstituted metal carbonyl, there are four active modes, one is 
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doublet and the other two are singlet. We can see from Table 5.7 that the 

two frequency values 2044 cm-1, and 2045 cm-1 have 1763, 1895 IR 

intensity values, respectively. These two values which have the highest IR 

intensity corresponding to the available doublet experimental value 

obtained by applying pulsed laser flash photolysis with visible and infrared 

detection (1958vs cm-1) [11]. The other calculated singlet value (2029 cm-1) 

with an IR intensity (984) corresponding to the experimental frequency 

(1934m cm-1). Dobson and co-workers were unable to see the IR stretching 

frequency (2070 cm-1 or scaled 1979 cm-1 [11]. Our calculations indicate 

that this missing IR frequency has a very low IR intensity.  

     As presented in section 5.3, because of the error in the computation, the 

calculated frequencies given in Table 5.7 must be scaled with a scale 

factor. This scale factor was calculated using linear regression with Lab Fit 

program. The carbonyl frequencies of ( 1η -chlorobenzene) Cr(CO)5 will be 

used to calculate the scaling factor because only the experimental values of 

the frequency ( 1η -chlorobenzene)Cr(CO)5 were available. After running 

linear regression with LAB FIT, the scale factor obtained was 0.956. 

Figure 5.8 shows the fitting between the experimental and the computed 

frequency from which the scale factor was calculated.  
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Figure 5.8 Experimental data vs. B3LYP data with applied constant scale 

factor 
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Figure 5.7 Infrared active modes of metal carbonyls, Ref [50] 
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The scaled frequency vs. the experimental frequency is given in the Table 

5.7. 

Table 5.7 Calculated unscaled frequencies, scaled frequencies, IR 
intensity and experimental frequencies in cm-1 of ( 1η -
chlorobenzene)Cr(CO)5 using DFT level of theory with 6-311G (D) basis 
set. 

Unscaled Fre IR intensity Scaled Freq Expa 

2029 )1(
1A  

2044 E  

2045 E  

2070 )2(
1A  

984 

1763 

1895 

69 

1939 )1(
1A  

1954 E  

1955 E  

1981 )2(
1A  

1934 )1(
1A  

1958vs 

1958vs 

…. )2(
1A  

                      a[11] 

It’s clear from Table 5.7 that there is a good agreement between the 

experimental data, and the calculated data, which again prove that DFT 

method is a good method for such compounds. 

5.5 Structure and Properties of trans-(CB)(L)Cr(CO)4 Complexes, 

where L = CO, PH3, PCl3 and PF3 

     In this section we will study, by theoretical means, the electronic 

properties of trans-(CB)(L)Cr(CO)4, where L = CO, PH3, PCl3 and PF3 to 

study the nature of bonding of CB with the metal center in this case 

chromium which was shown to take place between the chlorine and 

chromium [11,12], and the effect of these ligands on the bond between 
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(CB) and Chromium. The data in Table 5.8 show the effect of the ligands 

L = CO, PH3, PCl3 and PF3, on the Cr-CB bond in the series of the 

compounds trans-(CB)(L)Cr(CO)4. 

Table 5.8 Optimized parameters (bond length Å) of trans-(CB)(L)Cr(CO)4 
where L=CO, PH3, PCl3 and PF3 using DFT with 6-311G(D) basis set 

L trans to CB Cr-CB Cr-P Cr-COcis Cr-COtrans COcis COtrans

CO 

PCl3 

PF3 

PH3 

2.658 

2.642 

2.633 

2.619 

 

2.189

2.156

2.305

1.916 

1.910 

1.910 

1.900 

1.853 1.144 

1.143 

1.144 

1.150 

1.15 

 

 The affect of these ligands on Cr-Cl bond length is in the order  

CO > PCl3 > PF3 > PH3. 

When the ligand L = CO, The Cr-CO bond length is equal to 1.853 Å, 

which is nearly similar to Cr-CO bond length when the CB is replaced by 

pip as was shown in Table 5.3. The trans Cr-CO bond length is shorter in 

both compounds Cr(CO)5CB and Cr(CO)5pip than in Cr(CO)6. This result 

can be explained as follow: Since both CB and pip are an electron donor, 

they donate electrons to the metal. The metal is electron rich, and to 

compensate for this, the metal donates electrons to the trans CO as back 

bonding. The bond length of the other Cr-CO in the trans-(CB)(L)Cr(CO)4 

complexes are much less affected in comparison with Cr(CO)6, which 
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indicate that the primary effect is on the trans ligand in octahedral 

complexes. From Table 5.8 different ligands have different electronic 

properties, which cause them to bond differently to the metal center. The 

bond length between the Cr and CB is longer when L = CO. This is in a 

good agreement with which is known experimentally [10]. An explanation 

of this phenomenon is presented below: In the ligands used in this study, 

the π  back-bonding and σ -donating ability are shown below [41, 55]:  

        PH3> PCl3> PF3        σ -donating ability  

CO>  PCl3  > PH3        π -back bonding 

Also, it’s well known that PF3 is a better π  accepting than PH3. The text 

book explanation is that electronegative substituent lower the energy of the 

d orbitals on phosphorus and therefore make them more available for 

bonding [52]. The electronic effect of a ligand is most likely caused by its 

σ -donating and its π  back-bonding abilities [10]. The better donor 

ligands will stabilize the transition state [10] and therefore increase the rate 

of dissociation of CB. The better π -acceptor ligands will make the metal 

more acidic [10]. This reduces the bonding between the metal and CB, and 

increases the rate of CB dissociation. It is clear from this discussion that, 

the electronic effect on the rate of CB dissociation is due to both σ -

donating and π  back-bonding abilities of the ligand bonded to the metal. 

The CO is well known as a good π -acceptor ligands but its σ -donating 

ability is unclear [10]. For example, Graham [45] determined CO to be a 

better σ -donor than PF3. However, Hall disagrees with Graham's results, 
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and he concluded that CO's act as electron reservoirs [10]. In other words, 

the CO's will denote electrons whenever the metal needs them. This may 

cause a stabilization of the transition state and increase the rate of CB 

dissociation.  

     In our study, the trend of the ligands according their back-bonding is 

CO > PCl3> PF3> PH3 

This trend is in agreement with the given experimental data. Taylor 

described a series of ligands according to their ability of π -acceptor. Some 

of these ligands are [10]: 

CO > PF3> PCl3 

     Our results have disagreement with Taylor trend where the ligand 

ability of π acceptor trend in our calculation is  

PCl3 > PF3 

     Experimentally, the rate of CB dissociation when L is CO is faster than 

the rate of CB dissociation when L is PR3 [10], where R is phosphine. The 

effect of L on the dissociation of PPh3 from trans-(L)(PPh3)Cr(CO)4, 

Crystal structure as shown in Table 5.9 showed that the Cr-PPh3 bond 

length increases as the π -accepting ability of the trans ligand increases, 

which is in a good agreement with the results presented in the present 

study for Cr-CB bond lengths of trans-(CB)(L)Cr(CO)4. 
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Table 5.9 The Cr-PPh3 bond lengths of trans-Cr(CO)4(L)(PPh3) 

L Cr-PPh3

Pbu3 

P(OMe)3

P(OPh)3 

CO 

2.345 

2.362 

2.393 

2.422 

Ref [10] 

In a similar study, Atwood [10] examined the ligand dissociation of L 

from trans-(L)(PPh3)Cr(CO)4. He concluded that the rate of trans PPh3 

displacement increases as the size of L increases, where the order of PPh3 

dissociation as a function of L is 

PPh3> P(OPh)3> P(OMe)3> CO. 

This order is opposite to the well known trans effect and to our calculated 

results in our study. The dominant effect in the trans ligand is the 

electronic properties of the trans ligand. It is inconceivable to envision a 

steric effect from a trans position.  

5.6 Predicted Energy of trans-(CB)(L)Cr(CO)4 Complexes, where L = 

CO, PH3, PCl3 and PF3 

     Energy of the system is one of important quantities which can be 

predicted by Gaussian calculations. It is located approximately three 
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screens back from the end of the output file. For example, The total energy 

of the trans-(chlorobenzene)(PCl3)Cr(CO)4 system, computed at Hartree-

Fock level, is given by this line of the output:  

SCF Done:  E(RHF) =  -3903.17455117     a.u. after    1 cycles  

The value is in Hartrees. One Hartree is 627.51 kcal-mol-1. The number of 

cycles it took the SCF calculation to converge is also given on this line. 

The energy of trans-(CB)(L)Cr(CO)4 Complexes, where L = CO, PH3, 

PCl3 and PF3 were calculated using DFT level of theory with 6-311G(D) 

basis set. The predicted energies are in Table 5.10. 

Table 5.10 Predicted energies of trans-(CB)(L)Cr(CO)4 complexes, where 
L = CO, PCl3, PF3, PH3 

L trans to CB Energy (Hartree)

CO 

PCl3 

PF3 

PH3 

-2303 

-3914 

-2831 

-2533 

 

5.7 Predicted Vibration Frequencies of trans-(CB)(L)Cr(CO)4 

Complexes, where L = CO, PH3, PCl3 and PF3  

     The vibration frequencies of trans-(CB)(L)Cr(CO)4 complexes, where 

L = CO,  PCl3 and PF3, PH3 were computed by the B3LYP level of theory 
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combined with 6-311G(D), and LanL2dZ basis sets as the ones used for 

geometry optimization. The predicted unscaled data are shown in the 

Table 5.11 where L= CO, PCl3 and PF3, PH3 respectively. All the 

calculated frequencies were factorized by 0.956 for the comparison with 

the experimental value of free CO: ν (CO)exp = 2143 cm-1 [49], and the 

calculated one is ν (CO)B3LYP = 2211 cm-1. The scaled frequencies are 

listed in Table 5.12. All the calculations were carried out using the 

Gaussian 98 program. The computed frequencies of CO  in the trans-

(CB)(L)Cr(CO)4 where L = CO  are 2044 cm-1, 2045 cm-1 , 2070 cm-1 , 

and 2029 cm-1, after scaling with the scale factor 0.956, these values 

become 1954 cm-1, 1955 cm-1, 1981 cm-1, 1939 cm-1, respectively. 

Table 5.11 The predicted unscaled carbonyl frequencies of trans-
(CB)(L)Cr(CO)4 where L = CO, PCl3 and PF3, PH3, respectively 

L Vibration Frequencies (IR intensity) 

CO 

PCl3 

PF3 

PH3 

2044 (1762), 2045 (1895), 2070 (69), 2029 (984) 

2053 (1447), 2055 (1623), 2082 (497) 

2045 (1624), 2048 (1811), 2075 (148) 

2007 (1850), 2006 (1855), 2039 (63) 

 

Each one of the scaled frequencies is lower than the free CO frequency. 

This result is due to the π -back donation from the metal to the (CO) s.  
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     The trans CO and also the other (CO)s in trans-(CB)(L)Cr(CO)4 benefit 

from increased back-bonding to give shorter and stronger Cr-CO. This 

reduces the frequency of C-O, causing a reduction in the C-O bond order 

which can be seen in the optimized structure of trans-(CB)(L)Cr(CO)4. 

(See Figure 5.9).  

 

Figure 5.9 Optimized structure of trans-(CB)(PH3)Cr(CO)4 

The CO bond length equals 1.15 Å in trans-(CB)(L)Cr(CO)4 which is 

longer than the free CO bond length which is equals 1.128 Å [49]. Note 

that the trans Cr-CO bond is shorter than the cis Cr-CO bond. This is 

because the CB group is a sigma donor, so the trans carbonyl ligand 

benefits from increased back-bonding to give shorter and stronger Cr-CO. 

Each carbonyl frequency of the metal compounds trans-(CB)(L)Cr(CO)4, 

where L = CO, PH3, PCl3, and PF3 which are listed in Table 5.13 is  lower 

than the frequency of the free CO. This is the case because each of ligands 

L = CO, PH3, PCl3 and PF3 has the ability of π -back bonding.  

     The convenient trends that are observed in the IR spectra of carbonyl 

complexes are consistent with the concept of π -back-bonding discussed 

above: The better the sigma-donating capability of the other ligands on the 

metal, the lower the CO stretching frequency. 
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Table 5.12 Unscaled vs. scaled metal carbonyls frequencies of trans-
(CB)(L)Cr(CO)4 where L = CO, PCl3, PF3, PH3 

L Cr-CB Å CO Å ν (CO)cm-1 Scaled frequency 

CO 

 

PCl3 

 

PF3 

 

PH3 

 

Free 

CO 

2.658 

 

2.642 

 

2.633 

 

2.619 

 

 

 

 

 

1.144 

 

1.143 

 

1.144 

 

1.150 

 

1.128a 

 

 

2044 E ,2045 E  

2070 1A , 2029 1A  

2053 E , 2055 E , 

2082 1A  

2045 E , 2048 E  

2075 1A  

2006 E , 2007 E ,  

2039 

1954, 1955 

1979 1A , 1940 1A  

1963 E ,  1965 E , 

1990 1A  

1955 E , 1958 E , 

1984 1A  

1918 E , 1919 E  

 1949 1A  

2143a 

a[49] 

5.8 Potential Energy Surface Scans 

     With Gaussian 98, one can perform a potential energy surface scan; 

thereby one can explore a region of a potential energy surface. This 

calculation performs a series of single point energy calculations at various 

structures, thereby sampling points on the potential energy surface. To 

request a scan job, the Scan keyword must be included in the route 

section. The variables in the molecular structure which are to vary and the 

range of values which they should take on must be specified. When only 
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one variable is allowed to vary, the scan begins at the structure where the 

specified variable is equal to initial-value. At each subsequent point, 

increment-size is added to the current value for the variable. The process is 

repeated until a number of single point energies have been completed. The 

result of a potential energy surface scan appears following this heading 

within the Gaussian output: Summary of the potential surface scan 

5.8.1 Potential Energy Surface Scans of trans-(CB)(PCl3)Cr(CO)4 

     A potential energy surface scan has been performed on the trans-

(CB)(PCl3)Cr(CO)4. Our purpose here is to find the Cr-CB bond energy. 

The minimum energy structure of this structure is at 2.65 Å Cr-CB bond 

lengths as shown in Figure 5.10. Through this scan we anticipated to 

calculate the bond energy Cr-CB, however, the program crashes, so we 

resorted to the calculations as in section 5.9. 
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Figure 5.10 Plot of the energies of trans-(CB)(PCl3)Cr(CO)4 at each point 
of the Cr-CB bond distance at DFT level of theory using 6-311G(D) basis 
set 

 

5.9 The Binding Energy 

     Accurate estimates of the breaking and forming of M-ligand bond 

energies in organometallic chemistry are essential for the understanding of 

many processes, ranging from organometallic synthesis to catalysis, 

surface chemistry, photo physics, and photochemistry [56]. Unfortunately, 

the first bond dissociation energies of a carbonyl ligand are hard to 

determine experimentally [56]. Thus, accurate theoretical data for the 

energetics of M-CO bond are needed to compensate for the scarce 

experimental data. Density functional theory (DFT) has proven to be a 
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powerful tool in predicting geometrical and thermodynamic properties of 

Organmetallic complexes [55].  

5.9.1 Overall Stability 

      The main parameter used to judge the overall stability of a complex is 

the binding energy listed in Table 5.13, which is defined as [53] 

)]())()(([])())(([. 44 LECOCrCBECOCrLCBtransEEB +−−=           (5.2) 

     The geometries of the fragments are calculated using single point 

energy calculation. The level of the theory used in this calculation is DFT 

with 6-311G(D) basis sets. These fragments are extracted from the 

corresponding optimized structures. The energy is transformed from 

Hartree to Kcal/mol. One Hartree is 627.51 kcal/mol = 2626KJ/mol. We 

present here the B.E obtained using B3LYP with 6-311G(D). The trans-

Cr(CO)5-(CB) complex has a B.E of 9.72 kcal/mol, followed by trans-

(PCl3)Cr(CO)4-(CB)( 10.64 

kcal/mol), followed by trans-(PF3)Cr(CO)4-(CB) ( 10.92 kcal/mol), and 

trans-(PH3)Cr(CO)4-(CB) ( 10.96 kcal/mol), With trans-(PH3)Cr(CO)4-

(CB) having the highest B.E of 10.96 kcal/mol. It is thus seen that this 

complex is the most stable. 

     The observed trend in the bond energy is in total agreements with the 

bond distances obtained which are listed in Table 5.8, where shorter bond 

means stronger bond. The binding energy when L is PH3 =10.9626 

kcal/mol which is greater than the binding energy when L is PF3 equals 
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10.9190 kcal/mol, which indicates that the bond strength between CB and 

Cr is stronger when L is PH3 than when L is PF3. This is in agreement with 

our calculation of the bond length as shown in Table 5.8 and in agreement 

with the fact that PF3 has more π  accepting ability than PH3 [52].  

 
Table 5.13 Binding energy of Cr-CB of trans-(CB)(L)Cr(CO)4, where L = 
CO, PCl3, PF3, PH3 

L Trans- 

(Cr)(L)Cr(CO)4 

Cr(CO)4L CB CB+ 

Cr(CO)4L 

B.Ea 

Kcal/mol 

CO 

PCl3 

PF3 

PH3 

-2303.27 

-3912.00 

-2831.00 

-2533.10 

-1611.33 

-3220.06 

-2139.04 

-1841.12 

-692 

-692 

-692 

-692 

-2303.30 

-3912.00 

-2831.00 

-2833.00 

9.72 

10.64 

10.91 

10.96 

a )]())()(([])())(([. 44 LECOCrCBECOCrLCBtransEEB +−−=  
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Conclusion 

     The electronic structures and vibration frequencies of Cr(CO)6, 

Cr(CO)5pip, Cr(CO)5CB complexes have been studied by high ab-initio 

HF and density functional theory using various basis sets. For the Cr(CO)6, 

Cr(CO)5pip, and Cr(CO)5CB complexes, the density functional theory with 

6-311G(d) gave results for the structure and vibration frequencies of such 

compounds which are in agreement with the experimental data. The 

discrepancy between the experimental and the theoretical values is due to 

the limitations in the one particle basis. The same calculations have been 

performed on a series of chromium carbonyl complexes, of the type trans-

(CB)(L)Cr(CO)4, where L = CO, PH3, PCl3 and PF3 to explore the effect of 

these ligands on the Cr-Cl bond. The influence of these ligands on the 

properties of these complexes was compared with the behavior of the 

carbonyl complex Cr(CO)6.  Most obvious effect observed on the Cr-Cl 

bond was when L = CO. The ligands can be placed in the following order 

according to their influence on the Cr-(CB) bond 

CO > PCl3 > PF3 > PH3 

This arrangement is consistent with the π  back-bonding capacity of the 

trans ligand to CB. This effect in the octahedral complexes is similar to the 

trans effect in square planar complexes. It is most likely that the trans 

influence is aground state effect; that is, the better π -accepting ligand 

reduces the bonding between CB and the metal center. As the π accepting 



 92

ability of L increases, the electron density between L and the metal center 

increases. As the electron density between L and the metal center 

increases, the electron density between the metal center and CB decreases. 

This weakens the bond between CB and the metal. This indicates that the 

size of the ligands is not important in the trans-(CB)(L)Cr(CO)4  

complexes. The calculated IR frequencies in these complexes are in good 

agreement with the known reported experimental IR frequencies. The 

calculated bond energy for Cr-CB is in agreement with the calculated bond 

distance of Cr-CB, where the shorter bond is a stronger bond. 
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Chapter 

Appendices 

7.1 Atomic Units 

This system of units is chosen to avoid cluttering the quantum mechanical 

equations with fundamental constants. It is based upon the choice h  = me 

= e = 1.  

The principal quantities of interest in this system are:   

Unit of length: Bohr radius, a o  = 5.292 Å  

Unit of energy, the Hartree, EH = 2626kJ mol-1 

7.2 Glossary 

  ab initio  a calculation that may use mathematical approximations, but 

does not utilize any experimental chemical data either in the calculation or 

the original creation of the method. 

Accuracy how close a computed value is to the experimental value? 

Approximation a numerical estimation of a solution to a mathematical 

Problem. 

Atomic units a system of units convenient for formulating theoretical 

derivations with a minimum number of constants in the equations. 

B3LYP (Becke 3 term, Lee Yang, Parr) a hybrid DFT method. 

Basis set a set of functions used to describe a wave function. 
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Bohr atomic unit of length. 

Born-Oppenheimer approximation assumption that the motion of 

electrons is independent of the motion of nuclei. 

Cartesian coordinates system for locating points in space based on three 

coordinates, which are usually given the symbols x, y, z or i, j, k. 

Convergence criteria for completion of a self-consistent field calculation. 

Correlation name for the statement that there is a higher probability of 

finding electrons far apart than close to one another, which is rejected by 

some but not all ab initio calculations 

Davidson-Fletcher-Powell (DFP) a geometry optimization algorithm 

Density functional theory (DFT) a computational method based on the 

total electron density 

Determinant a mathematical procedure for converting a matrix into a 

function or number 

Diffuse functions basis functions that describe the wave function far from 

the nucleus 

Electron density (charge density, number density) number of electrons 

per unit volume at a point in space 

Electronic structure the arrangement of electrons in a molecule 

Gaussian-type orbital (GTO) mathematical function for describing the 

wave function of an electron in an atom 
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Hamiltonian quantum mechanical operator for energy. 

Hartree atomic unit of energy 

Hartree-Fock (HF) an ab initio method based on averaged electron 

electron interactions 

In-core integral evaluation algorithm that stores integrals in memory 

kinetic energy energy that a particle has due to its motion 

Perturbation theory an approximation method based on corrections to a 

solution for a portion of a mathematical problem 

Potential energy energy that a particle has due to its position, particularly 

because of Coulombic interactions with other particles 

Quantum mechanics a mathematical method for predicting the behavior 

of fundamental particles, which is considered to be rigorously correct 

when applicable (where the effects of relativity are negligible) 

Self-consistent field (SCF) procedure for solving the Hartree-Fock 

equations 

pip Piperidine 

CB chlorobenzene 

Lw weak ligand 
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7.3 What's an "operator"? 

An operator is simply a symbol that tells us to perform an operation. In the 

expression 3 x a, the symbol "x" is an operator that tell us to multiply a by 

3. Similarly, in the expression 

axex aee
dx
d

=
 

the )(
dx
d symbol tell us to perform the differentiation. 

7.4 Functional 

Functional takes a function and provide a number. It is usually written 

with the function in square brackets as 

afF =][  

For example: take a function and integrate it from -∞  to +∞The formula 

for the expectation value is the total energy functional E(ψ ). Since it take 

some function ψ  and returns the value of energy for thisψ . 

Functional can also have derivatives, which behave similarly to traditional 

derivatives for functions. The differential of the functional is defined as : 

∫=−+= dxxf
xf

FfFffFfF )(
)(

][][][ δ
δ
δδδ

 

The functional derivatives have properties similar to traditional function 

derivatives, e.g.: 
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7.4 Input Structure of Some Molecules Used in This Study 

Table 7.1 Input structure of (CB)Cr(CO)6 in Cartesian coordinates 

( 1η -chlorobenzene)Cr(CO)5 

Cr 
C 
O 
C 
C 
C 
C 
O 
O 
O 
O 
Cl 
C 
C 
C 
C 
C 
C 
H 
H 
H 
H 
H 

 

0.687374
-1.208190
0.667863
0.745344
0.677164
2.584392
0.698063
0.783832
3.760826
0.711308

-2.385925
0.687374

-0.075705
-0.522901
-1.829195
-1.001131
-2.738253
-2.326289
0.948176

-2.134227
-0.681532
-3.760826
-3.034549

-0.897449
-0.928119
-0.770005
-2.737779
-0.810189
-0.810062
-0.928764
-3.918352
-0.770911
-0.959860
-0.958959
1.777387
2.710473
2.458580
2.707725
3.244328
3.241597
3.509242
2.502432
2.497517
3.446439
3.442299
3.918352

-0.694431 
-0.694431 
-3.767890 
-0.754042 
-2.591562 
-0.694541 
1.200732 

-0.791773 
-0.692034 
2.378748 

-0.701324 
-0.694431 
1.829783 
0.529399 
0.095878 
2.749567 
1.031821 
2.352220 
2.123735 

-0.922957 
3.767890 
0.725165 
3.067812 
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Table 7.2 Input structure of trans-(CB)(PH3)Cr(CO)4 in Cartesian 
coordinates 

trans-(CB)(PH3)Cr(CO)4 
Cr 
Cl 
C 
C 
C 
C 
P 
C 
O 
O 
O 
O 
C 
C 
C 
C 
C 
H 
H 
H 
H 
H 
H 
 

1.250806 
-0.792805
2.128342 
0.454766 
2.090050 
0.425560 
3.048224 
2.322194 
2.713063 
2.647462 
-0.050380
-0.005739
2.909355 
-2.897895
-4.119918
-4.108450
-4.719566
3.958163 
2.841820 
4.036187 
2.432147 
-2.411661
-4.590028
 

0.000040 
-0.012493
1.304105 
1.388445 
-1.377953
-1.315012
0.010855 
-0.005177
2.091122 
-2.209217
-2.117915
2.235246 
-1.219037
1.213957 
-1.204002
1.209668 
0.005543 
-1.077494
0.091236 
1.027536 
-2.152730
2.143319 
-2.143771
 

-0.000695 
-1.638517 
-1.070694 
1.017903 
-1.006966 
1.089913 
1.442911 
-0.732354 
-1.668876 
-1.570347 
1.761297 
1.644668 
-0.401634 
-0.400721 
0.288813 
0.289910 
0.633234 
1.483839 
2.843796 
1.374890 
-0.672158 
-0.669894 
0.557584 
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Table 7.3 Input structure of trans-(CB)(PCl3)Cr(CO)4 in Cartesian 
coordinates 
  

trans-(CB)(PCl3)Cr(CO)4 
Cr 
Cl 
C 
C 
C 
C 
P 
C 
O 
O 
O 
O 
F 
F 
F 
C 
C 
C 
C 
C 
H 
 

-0.776328
1.475629 
-0.080817
-1.435646
0.072747 
-1.445754
2.619101 
2.877012 
0.331139 
-1.852120
0.341391 
-1.868558
2.564125 
-3.656121
3.695183 
3.376721 
3.443228 
4.487889 
4.554085 
5.075875 
2.911239 
 

0.323393 
1.676046 
-0.978482
1.667288 
0.640547 
1.326942 
0.786829 
0.585718 
1.757405 
2.456322 
1.215928 
1.912865 
2.366737 
-0.824735
0.464315 
0.007697 
0.384724 
0.840912 
0.451520 
1.062446 
0.171562 
 

0.039188 
0.217563 
1.243081 
-1.156193 
-1.447225 
1.526320 
-0.104371 
0.080368 
1.974220 
-1.870367 
-2.345888 
2.411938 
-0.347399 
1.113483 
-1.243814 
1.231365 
1.170880 
1.115374 
-1.266378 
-0.128135 
2.192421 
 

 


